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1 Introduction

What does it mean for a society of agents or an electronic community to be
open? A possible answer is to be neutral with respect to the architecture of
the system. Another one is that from the prospect of agent technology, we may
have agents without an assigned goal and the goals assigned to agents are, in
general, loose. This society is open to new agents either with no definite goal
or with self motivated goals not exceedingly relevant to the society. In other
words they assume the heterogeneity of the participating agents.This openness
signifies that the architecture of the system is not driven by goals imposed to
the collective of agents, but that general goals arise from the collective actions
of agents. Also, the adjunction of new agents must be as easy as required. In
other words, the architecture of the society can exhibit some dynamical features
rather than being solely static or bounded. Such a society or community should
have a basic ingredient to be sustainable, a computational mechanism for trust.

The scientific research in the area of computational mechanisms for trust and
reputation is a recent discipline oriented to increase the reliability and perfor-
mance of electronic communities. The new paradigm of the so called intelligent
or autonomous agents and Multi-Agent Systems (MAS) together with the spec-
tacular emergence of the information society technologies (specially reflected by
the popularization of electronic commerce) are responsible for the increasing
interest on trust and reputation mechanisms applied to electronic societies.
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An important scenario, that needs particular mention is that of Negotiation.
Negotiation is a fundamental concept in multi-agent systems because it enables
(self-interested) agents to find agreements and partition resources effeciently and
effectively [34, 20]. Recently, a number of automated negotiation mechanisms
have been proposed ranging from centralised approaches, using mechanism de-
sign or auction theory [31, 14], to distributed approaches using bargaining
protocols [28]. In all of these approaches, however, the essence of the agent in-
teractions boils down to making commitments to (contracts with) one another
to carry out particular tasks. A commitment in this sense is a pledge to abide by
the conditions set out in the agreement [40]. These commitments may involve,
for example, a pledge to pay a particular amount of money for a service or a
pledge to deliver goods within a particular time frame. However, in open envi-
ronments (e.g. the grid [15], the semantic web [39], ubiquitous computing [2],
and e-commerce [29]) where agents are probably at their most useful, there is
no guarantee that a contracted agent will actually fulfill its commitments (even
if there are associated penalty clauses for reneging). This is because there are
a number of factors that might entice it to renege on its commitments:

1. The agents often represent different (self-interested) stakeholders, each
with its own aims and objectives. This means the most common design
strategy for an agent is to maximise its expected individual utility [26].
This may, in turn, well involve breaking earlier commitments if more prof-
itable opportunities present themselves.

2. Given the scale and distributed nature of the system, agents are unlikely to
have complete information about their counterparts. Therefore, in taking
up an offered service, a client may not know how effective and/or efficient
the provider is in actually delivering that service. This means there could
be a gap between the service as advertised and the service as it is actually
delivered that the agent could exploit to gain benefit. In the extreme case,
an agent may simply renege on the whole deal (i.e. not deliver any of the
agreed service), while in other cases an agent may only partly fulfill its
commitments (i.e. up to a certain degree rather than completely renege
on them). For example, several seller agents might offer the same product
but each may have different degrees of efficiency with respect to delivering
on time. Therefore, in this case the later the delivery time, the lower the
degree of fulfillment of the sellers’ commitment to deliver the product (at
the agreed time).

Given this background, it is clear that agents are faced with significant de-
grees of uncertainty about the efficiency and effectivness of their counterparts in
enacting the terms of the contract they wish to negotiate. In general, the esti-
mates of uncertainty that an agent has about its (possible) interaction partners
can be captured through the overarching notion of trust.

In the OpenKnowledge context this is especially true, as the most acclaimed
notion is its openness. The services are modeled as interaction protocols in an
electronic institution which is executed using the light weight protocol language
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(LCC). When an interaction model is defined, to execute the model, it is required
to find agents that can enact roles in the model. Agents need to have capabilities
to fulfill these roles, for the successful execution. Yet, as we have an open system,
and as we assume heterogeneity of agents, it can happen that agents can lie
about their abilities. As there is no other mechanism to verify such behavior,
trust and reputation models help us evaluate the trustworthiness of an agent.

Another aspect that is relevant to open systems and in particular to Open-
Knowledge is the trust that one places on the services, software components and
in general on the interaction models that are found in the open community. The
difference between trust on an agent and trust on a service may be conceptual.
Trust on a software entity more or less can be mapped to a number of factors
describing the quality of the entity. This can be for example, the correctness,
efficiency of the design, optimization whether performed, etc. On a different
perspective, the trust on a software entity can be entitled to the trust on the
owner of that entity. This works very well if the open system associates an entity
to its owner. This may be a reasonable assumption, as one of the predominant
open systems, the internet does so. In the latter case, the computational mech-
anisms for trust and reputation on agents can be applied directly for software
entities too. In the former case, each entity needs to have a QOS(quality of ser-
vice) associated with it, which can be computed in various ways. A discussion
of these methods is outside the scope of this paper. But just to complete our
argument, one of the ways in getting this value is to use the value provided by
the owner, in which case, the trust on the value can be translated to the trust
on the owner. Thus to conclude, computational mechanisms for trust on agents
can to a great extend take care of trust on software artifacts generated by them.
The difference in treatment could only be in terms of how extensive a model is
required. So from now on in the discussions, when trust on agents is mentioned
we assume the same is applicable to trust on artifacts unless explicitly specified
otherwise.

In the following sections we present a summary of the important works
in the area of computational trust and reputation in the recent years along
with a set of criteria for classification of such models. Later sections provide
a detailed illustration of three trust models namely the CREDIT, ReGreT and
Information Theory based model that have been developed by researchers of the
IIIA and that provide the baseline for trust modelling within Open Knowledge.
In deliverable D4.4 a discussion on how these models can support semantic
matching is made.

2 Criteria for model classification

Although the study of computational trust and reputation models is quite re-
cent, in the last few years a lot of different proposals have appeared. These
models can be classified based on the following factors: Information sources con-
sidered (direct experience, witness information, sociological information, preju-
dice etc), visibility types (subjective, objective), granularity of the model (single
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context, multi context), agent types and reliability measures. The following
elaborates this

2.1 Classification Dimensions

• As would be expected, the main information sources used by the trust and
reputation models are direct experiences and information from third party
agents (witness information). There are very few models that take into
account other aspects to calculate trust and reputation values. These two
sources of information are, with no doubt, the most relevant. Nonetheless,
a good mechanism to increase the efficiency of actual trust and reputation
models (and also to overcome the lack of condence in e-markets) is the
introduction of sociological aspects as part of these models.

• The visibility of the trust and reputation of an individual can either be
seen as global shared by all the observers or as subjective assessed partic-
ularly by each individual. In the first case, the trust/reputation value is
calculated from the opinions of the individuals that in the past interacted
with the individual being evaluated. This value is publicly available to all
members of the community and updated each time a member issues a new
evaluation of an individual. In the second case, each individual assigns a
personalized trust/reputation value to each member of the community
according to more personal elements like direct experiences, information
gathered from witnesses, known relations between members of the com-
munity and so on.

• Likewise the granularity of the models could be context dependent (multi
context) or otherwise (single context). A single-context trust/reputation
model is designed to associate a single trust/reputation value per partner
without taking into account the context. A multi-context model has the
mechanisms to deal with several contexts at a time maintaining different
trust/reputation values associated to these contexts for a single partner.

• The models could be classified according to the degree of sophistication
in agent behavior. The simplest model assumes all agents to be honest
at all times. A more sophisticated model assumes that agents can hide
information though they never lie. Finally there are models with specific
mechanism to take care of liars.

• As important as the trust/reputation value itself is to know how reliable
is that value and the relevance it deserves in the final decision making
process. Depending on the model, the elements that are considered to
calculate the reliability measure are different. Among them there may be
elements like the number of experiences, the reliability of witnesses, how
old is the information used to build trust and reputation, and so on.
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2.2 Contributions

In this section we summarise the most influential works in the field.
The trust model proposed by Marsh [25] is one of the earliest. The model

only takes into account direct interaction. It differenciates three types of trust:
Basic trust which models the general trusting disposition independently of who
is the agent that is in front, General trust which is the trust that one agent has
on another without taking into account any specic situation, and Situational
trust which is the amount of trust that one agent has in another taking into
account a specic situation. The utility of the situation, its importance and the
General trust are the elements considered in order to calculate the Situational
trust.

eBay [11], Amazon Auctions [3] and OnSale Exchange [27] are good examples
of online marketplaces that use reputation mechanisms. eBay is one of the
worlds largest online marketplace with a community of over 50 million registered
users. Most items on eBay are sold through English auctions and the reputation
mechanism used is based on the ratings that users perform after the completion
of a transaction. The user can give three possible values: positive(1), negative(-
1) or neutral(0). The reputation value is computed as the sum of those ratings
over the last six months. Similarly, Amazon Auctions and OnSale Exchange use
also a mean (in this case of all ratings) to assign a reputation value. All these
models use reputation as a global property. Though simple, this has definitely
contributed to the success of e-markets.

Sporas and Histos [42] are evolved versions of the online reputation models
discussed above. Histos includes witness information in the calculation of trust
values. They also incorporate a reliability measure of the trust values produced.

The trust model proposed by Schillo et al. [36] is intended for scenarios where
the result of an interaction between two agents (from the point of view of trust)
is a boolean impression. The model is based on probability theory and proposes
a Prisoners dilemma set of games to calculate the trust value of a partner. This
model also introduces the TrustNet concept. It is used by each individual agent
to collect witness information in a systematic manner. Different from models
discussed so far, this model takes care of information hiding agent behavior.
The author provides no information however concerning how to combine direct
experience with witness information. It also does not take care of contexts.

This trust model Abdul-Rahman and Hailes [1] uses four degrees of belief
to typify agent trustworthiness: vt (very trustworthy), t (trustworthy), u (un-
trustworthy) and vu (very untrustworthy). For each partner and context, the
agent maintains a tuple with the number of past experiences in each category.
Then, from the point of view of direct interaction, the trust on a partner in a
given context is equal to the degree that corresponds to the maximum value in
the tuple. Contrary to other trust models where witness information is merged
with direct information to obtain the trust on the specic subject, this model is
intended to evaluate only the trust on the information given by witnesses. Di-
rect experiences are used to compare the point of view of these witnesses with
the direct perception of the agent and then be able to adjust the information
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coming from them accordingly.
The trust model proposed by Esfandiari and Chandrasekharan [12], com-

bine direct observation with interaction. Bayesian learning is used to update
direct observation trust values. There are two main protocols of interaction,
the exploratory protocol where the agent asks the others about known things
to evaluate their degree of trust and the query protocol where the agent asks
for advice from trusted agents. This model takes care of multi contexts and
proposes a trust acquisition mechanism called institutional trust, the idea being
to exploit the structure in the environment to determine trust values. However
as in many models, there is no information provided to combine the different
trust acquisition mechanisms.

In Sen and Sajjas’ [38] reputation model, both interaction and observation
types of direct experiences are considered. The focus of this work is on how
agents use word of mouth information to assign trust and reputation values.
Reinforcement learning is used to update the reputation value. A mechanism
to take care of liars though it is assumed that liars lie consistently.

The main characteristic of the model by Carbo [6] is the use of fuzzy sets
to represent reputation values. They combine old and new fuzzy values with a
weighted aggregation and is termed as remembrance or memory. This allows to
give more importance to the latest interaction. The notion of reliability of the
reputation value is modeled through the fuzzy sets themselves. Recommenda-
tions from other agents are aggregated directly with the direct experiences.

The main idea behind the reputation model presented by Carter et al. [7]
is that the reputation of an agent is based on the degree of fulfillment of roles
ascribed to it by the society. As these roles are local to a society, it is impossible
to universalize the calculation of reputation. The users overall reputation is
calculated as a weighted aggregation of the degree of fulfillment of each role
where the weights are entirely dependent on the specific society.

The trust model proposed by Castelfranchi and Falcone [8] is a clear example
of a cognitive trust model. The basis of their model is the strong relation
between trust and delegation. That is the decision that takes an agent x to
delegate a task to agent y is based on a specic set of beliefs and goals and this
mental state is termed as trust. They define the set of beliefs to build up a state
of trust as competence, willingness, dependence, persistence, etc.

Following sections present three different models for computational trust, in
the order of increasing sophistication. The context of most of the discussion that
follows is negotiation dialogues. Yet negotiation dialogues need not be viewed
in its narrow setting of electronic commerce, but can be viewed in a broader
spectrum, where services and information are negotiated. In the context of
OpenKnowledge negotiation dialogues are for services. Services advertised by
peers as interaction models. Quality of service(QOS), utility of information,
time constraints, and availability are some of the basis on which negotiation
takes place.
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3 ReGreT

Up to now, the computational models of trust and reputation have been con-
sidering two different information sources: (i) the direct interactions among
agents and (ii) the information provided by members of the society about ex-
periences they had in the past [35, 36, 41, 42]. Those systems, however, forget
a third source of information that can be very useful. As a direct consequence
of the interactions, it is possible (even in not too complex societies) to identify
different types of social relations between society members. Sociologists and
psychologists have been studying these social networks in human societies for
a long time and also how these social networks can be used to analyse trust
and reputation [33, 5]. These studies show that it is possible to say a lot about
the behaviour of individuals using the information obtained from the analysis
of their social network.

ReGreT is a modular trust and reputation model oriented to complex e-
commerce environments where social relations play an important role. ReGreT
model is very relevant in open communities like OpenKnowledge where a social
relation exists among the participating agents or one gets gradually built over
a period of time. For instance, in the context of a community that collaborate
over information, the social relation may be based on roles such as informa-
tion providers, information brokers, etc. Over time, a role becomes more trust
worthy than another, and certain trust/reputation value gets associated with
agents holding that role. In some of the human societies, for instance, consider
politicians to be less trustworthy than people holding other responsibilities. The
ReGreT system attempts to model these emerging trust values associated with
being a particular member of the society, and being associated with certain
others. Here we brief the main characteristics of ReGreT:

• It takes into account direct experiences, information from third party
agents and social structures to calculate trust, reputation and credibil-
ity values.

• It has a trust model based on direct experiences and reputation.

• It incorporates an advanced reputation model that works with transmitted
and social knowledge.

• It has a credibility module to evaluate the truthfulness of information
received from third party agents.

• It uses social network analysis to improve the knowledge about the sur-
rounding society (specially when no direct experiences are available).

• It provides a degree of reliability for the trust, reputation and credibility
values that helps the agent to decide if it is sensible or not to use them in
the agent’s decision making process.

• It can adapt to situations of partial information and improve gradually its
accuracy when new information becomes available.
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• It can manage at the same time different trust and reputation values asso-
ciated to different behavioural aspects. Also it can combine reputation and
trust values linked to simple aspects in order to calculate values associated
to more complex attributes.

The following subsections provide an overview of social network analysis(SNA)
and why it can be used to calculate trust and reputation values, when used in
complex agent societies. Then a general perspective of the ReGreT system is
outlined along with the different elements that compound it.

3.1 Social Network Analysis and agent societies

Social network analysis is the mapping and measuring of relationships between
people, groups, organizations, computers or other information/knowledge pro-
cessing entities. The nodes in the network are the people and groups while the
links show relationships between nodes. Social network analysis provides both
a visual and a mathematical analysis of these relationships.

As pointed out by Scott [37], three main traditions have contributed to the
development of present-day social network analysis: the advances on graph the-
ory performed by the sociometric analysts; the Harvard researchers of the 1930s,
who explored patterns of interpersonal relations and the formation of ‘cliques’;
and the Manchester anthropologists, who built on both of these strands to in-
vestigate the structure of ‘community’ relations in tribal and village societies.
These traditions were brought together in the 1960s and 1970s to forge contem-
porary social network analysis. From then, social network analysis has been
widely used in the social and behavioral sciences, as well as areas like political
science, economics, or industrial engineering.

One of the main characteristics of social network analysis is the use of rela-
tional data instead of attribute data (which is usually quantified and analysed
through statistical methods). Relational data can be handled and managed in
matrix form or using graphs. A graph structure that shows social relations is
called a sociogram. A different sociogram is usually built for each social rela-
tion under study and depending on the type of relation we have a directed or
non-directed sociogram, with weighted edges or without. Indegree, density or
node centrality are examples of graph theory concepts used in social network
analysis to extract conclusions from sociograms.

The ReGreT system uses social network analysis in two different situations.
One is to choose a good set of witnesses to be queried for information. The
way social network analysis is used here has a lot of aspects in common with
the way it is used in the work of Buskens and Pujol et al. In this situation it
is considered only one type of relation and the analysis is based on parameters
like centrality, the number of other points in its neighbourhood (degree) and
so on. However, in the ReGreT system, social network analysis is also used as
part of the reputation and credibility models. In both cases only the relations
among a small set of individuals are considered and the type of relation is very
relevant in order to perform the analysis.
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Figure 1: The ReGreT system.

3.2 The ReGreT system, a general view

Figure 1 shows a panoramic view of the ReGreT system.
The system maintains three knowledge bases. The outcomes data base

(ODB) to store previous contracts and their result; the information data base
(IDB), that is used as a container for the information received from other part-
ners and finally the sociograms data base (SDB) to store the sociograms that
define the agent social view of the world. These data bases feed the different
modules of the system. They are the direct trust module along with the reputa-
tion model, and the credibility module. The reputation model consists of witness
reputation, neighbourhood reputation , and the system reputation, each of which
will be discussed in the following subsections. The last element which is the
ontological structure provides the necessary information to combine reputation
and trust values linked to simple aspects in order to calculate values associated
to more complex attributes.

Trust and reputation have a temporal dimension. That is, the reputation
and trust value of an agent change along time. We will, however, omit the
reference to time in the notation in order to make it more readable. We will
refer to the agent that is calculating a reputation as a (what we call the “source
agent”) and the agent that is the object of this calculation as b (what we call
the “target agent”).

3.3 Direct trust

We use the term direct trust to refer to the trust that is built from direct
interactions. For simplicity, we don’t differenciate between direct observation
and direct interaction. In the ReGreT system, direct trust is always linked to
a specific behavioural aspect. Therefore, we talk about the direct trust agent a
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has in agent b in a specific context to perform a specific action. I can trust a
friend to drive me to the airport but it doesn’t mean I trust him to fly the plane.
The ReGreT system, either for trust or reputation, always takes into account
the context.

The basic element to calculate a direct trust in the ReGreT system is the
outcome. We define the outcome of a dialog between two agents as either:

• An initial contract to take a particular course of action and the actual
result of the actions taken, or

• An initial contract to fix the terms and conditions of a transaction and
the actual values of the terms of the transaction.

An outcome is represented as a tuple of the form o = (a, b, I,Xc, Xf , t) where
a and b are the agents involved in the contract, I a set of indexes that identify
the issues of the contract, Xc and Xf are two vectors with the agreed values
of the contract and the actual values after its fulfillment respectively, and t the
time when the contract was signed. We use a subscript i ∈ I to refer to the
specific value of issue i in vectors Xc and Xf . For instance, in a SuppWorld
scenario we have I = {Price,Quantity ,Quality ,Transport Type}. If we want to
make reference to the Price value in the vector Xc we use the notation Xc

Price .
ODB is defined as the set of all possible outcomes. ODBa,b ⊆ ODB is the

set of outcomes that agent a has signed with agent b. We define ODBa,b
{i1,··· ,in} ⊆

ODBa,b as the set of outcomes that include {i1, · · · , in} as issues in the contract.
For example, ODBa,b

{Price} is the set of outcomes that has agent a from previous
interactions with agent b and that fix, at least, the value for the issue Price.

Given that, we can define a direct trust (noted as DT a→b(ϕ) where ϕ is
the behavioural aspect under evaluation) as the trust relationship calculated
directly from an agent’s outcomes database.

To calculate a direct trust relationship we use a weighted mean of the out-
comes evaluation, giving more relevance to recent outcomes.1 The evaluation of
an outcome o = (a, b, I,Xc, Xf , t) (what we call the impression of the outcome)
depends on the behavioural aspect. This dependency is reflected in two aspects.
First, the issue of the outcome that is relevant for the evaluation and second
the function used for the evaluation.

We define a grounding relation (gr) as the relation that links a behavioural
aspect ϕ with a specific issue and the function used to evaluate the outcome.
This allows us to select the right subset of outcomes from the general outcomes’
data base and also evaluate the outcome according to the semantics of the
behavioural aspect.

As an example, a possible grounding relation for a seller in a SuppWorld
scenario is defined in the following table:

1There are many psychological studies that support recency as a determinant factor [22].
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Figure 2: g(x) = sin(π2x)

ϕ gr(ϕ) V (Xs)⊗ V (Xc)
offers good prices Price V (Xs)− V (Xc)

maintains agreed quantities Quantity abs(V (Xs)− V (Xc))
offers good quality Quality V (Xs)− V (Xc)
delivers quickly Transport Type V (Xs)− V (Xc)

where V (Xc) is the utility of the contract values, and V (Xs) is the utility
of a vector build using the following formula:

Xs
i =

{
Xf
i if i ∈ gr(ϕ)

Xc
i otherwise

In other words, we obtain this vector from vector Xc by replacing the value
specified in the index gr(ϕ) by the value in the same positions in vector Xf .

The general formula to evaluate an outcome is:

Imp(o, ϕ) = g(V (Xs)⊗ V (Xc))

Where g is a function that models the personality of the agent as the degree
of deception or reward obtained after the analysis of the outcome (an appro-
priate function is g(x) = sin(π2x) shown in figure 2) and ⊗ is an aggregation
function that depends on the shape of the utility function for that issue. For
instance, if instead of having the behavioural aspect offers good prices we had
offers bad prices, the function ⊗ would be V (Xc)− V (Xs).

Given that, the formula to calculate a direct trust value in the ReGreT
system is:

DT a→b(ϕ) =
∑

oi∈ODBa,b
gr(ϕ)

ρ(t, ti) · Imp(oi, ϕ)

with ρ(t, ti) = f(ti,t)P
oj∈ODB

a,b
gr(ϕ)

f(tj ,t)
where t is the current time and f(ti, t) is a

time dependent function that gives higher values to values closer to t. A simple
example of this type of function is f(ti, t) = ti

t .
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We know how to calculate a direct trust value. However in order to use that
value it is very important for the agent to know also how reliable it is. There
are many elements that can be taken into account to calculate the reliability
of a direct trust value. The ReGreT system focus on two of them: the number
of outcomes used to calculate the direct trust value and the variability of their
values. This approach is similar to that used in the Sporas reputation model [42].

The intuition behind the number of outcomes factor (noted as No) is that
an isolated experience (or a few of them) is not enough to make a correct
judgment about somebody. You need a certain amount of experiences before
you can assess how an agent behaviour is. As the number of outcomes grows,
the reliability degree increases until it reaches a maximum value, what we call
the intimate level of interactions (itm from now on). From a social point of
view, this stage is what we know as a close relation. More experiences will not
increase the reliability of our opinion from then on. The next simple function
is the one we use to model this:

No(ODBa,b
gr(ϕ)) =


sin

(
π·|ODBa,b

gr(ϕ)|
2·itm

)
|ODBa,b

gr(ϕ)| ≤ itm

1 otherwise

The function chosen to compute ODBa,b
gr(ϕ) when |ODBa,b

gr(ϕ)| ≤ itm serves

the purpose of reaching the value 1 when |ODBa,b
gr(ϕ)| = itm and 0 when |ODBa,b

gr(ϕ)| =
0. Other functions sharing this property could be used as well.

There is nothing special with the equation we use when |ODBa,b
gr(ϕ)| ≤ itm.

The important thing is that arrives to 1 when x = itm. Other equations can be
used to model a more credulous or distrustful behaviour.

The itm value is domain dependent: it depends on the interaction frequency
of the individuals in that society and also on the “quality” of those interactions.
A plot of this function when itm = 10 is shown in figure 3.

The outcome deviation (noted as Dv) is the other factor that the ReGreT
system takes into account to determine the reliability of a direct trust rela-
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tionship. The greater the variability in the rating values the more volatile will
the other agent be in the fulfillment of its agreements. To have a measure of
this variability we consider the impressions of the outcomes that are used to
calculate the direct trust.

We calculate the outcome reputation deviation as:

Dv(ODBa,b
gr(ϕ)) =

∑
oi

ρ(t, ti) · |Imp(oi, ϕ)−DT a→b(ϕ)|

Where oi ∈ ODBa,b
gr(ϕ) and Dv(ODBa,b

gr(ϕ)) ∈ [0, 1]. A deviation value near 1
indicates a high variability in the rating values (that is, a low credibility on the
direct trust value from the outcome reputation deviation point of view) while a
value close to 0 indicates a low variability (that is, a high credibility on the direct
trust value). Note that we are calculating a kind of weighted mean deviation
instead of a standard deviation.

Finally, we define the reliability of a direct trust relationship value (DTRL)
as the product of functions No and (1-Dv).

DTRLa→b(ϕ) = No(ODBa,b
gr(ϕ)) · (1−Dv(ODBa,b

gr(ϕ)))

3.4 The reputation model

The problem with direct experiences is that they are usually expensive to obtain
in terms of time and cost. This aggregation of others’ experience is the base
of reputation. The reputation model of the ReGreT system differentiates three
types of reputation depending on the information source that is used to calculate
them: Witness Reputation, Neighbourhood Reputation and System Reputation.

Sociologically speaking, this division is far from complete, nevertheless is
enough to keep the balance between the complexity of the system and the de-
mands that an agent can satisfy in an open community setting. In the following
subsections we explain in detail how each reputation type is calculated and how
the ReGreT reputation model aggregates the information to obtain a single
reputation value.

3.4.1 Witness reputation

Beliefs about trust can be (and usually are) shared among members of a society.
The reputation that an agent builds on another agent based on the beliefs
gathered from society members (witnesses) is what we call witness reputation.
In an ideal world, with only homogeneous and trusty agents, this information
would be as relevant as direct experiences. However, in the kind of scenarios
we are considering, it may happen that Information be wrong, Information be
biased, Agents hide information due to various factors associated with the agents
in question and the context.

Besides that, the information that comes from other agents can be correlated
(what is called the correlated evidence problem [32]). This happens when the
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opinions of different witnesses are based on the same event(s) or when there is
a considerable amount of shared information that tends to unify the witnesses’
way of “thinking”. In both cases, the trust on the information shouldn’t be
as high as the number of similar opinions may suggest. We take an approach
based on the social relations between agents. Analysing these relations, an agent
can obtain useful information to minimize the effects of the correlated evidence
problem.

We assume that the information to be exchanged among agents is a tuple
where the first element is the trust value on the target agent for a specific
behavioural aspect from the point of view of the witness, and the second element
is a value that reflects how confident the witness is about that trust value. We
note the tuple as 〈Trustw→b(ϕ),TrustRLw→b(ϕ)〉, where w is the agent giving
the information (the witness), b the target agent and ϕ the behavioural aspect
considered. Each agent maintains a data base of received information. Similar
to the outcomes data base, IDBa is defined as the set of all information received
by agent a and IDBa,w notes the subset of information received by agent a from
agent w.

• Identifying the witnesses

The first step to calculate a witness reputation is to identify the set of
witnesses (W) that will be taken into account by the agent to perform
the calculation. The initial set of potential witnesses might be the set of all
agents that have interacted with the target agent in the past. For instance,
in an e-commerce environment, the initial set can be composed by all the
agents that had had a trade relation with the target agent (it seems logical
to think that the best witnesses about the commercial behaviour of the
target agent are those agents that had a trade relation with it before).
This set, however, can be very big and the information provided by its
members probably suffer from the correlated evidence problem.

We take the stance that grouping agents with frequent interactions among
them and considering each one of these groups as a single source of infor-
mation minimizes the correlated evidence problem. Moreover, assuming
that asking for information has a cost, it makes no sense to ask for the
same thing to agents that we expect will give us more or less the same
answer. Grouping agents and asking for information to the most represen-
tative agent within each group reduces the number of queries to be done.
A domain dependent sociogram is what we use to build these groups and
to decide who is their most representative agent.

There are many heuristics that can be used to find groups and to select
the best individual to ask. The heuristic used by the ReGreT witness
reputation mechanism is based on the work by Hage and Harary [17].
Taking as the initial graph the subset of the selected sociogram over the
agents that had interactions with the target agent, and selecting a node
which is a cut point(indicating some kind of local centrality).If there are
no cut points, then choose a node as representative with the largest degree.
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• Who can I trust? The credibility model

Once the information is gathered from witnesses (or recovered from the
data base of previous informations -IDB -), the agent obtains

{〈Trustwi→b(ϕ),TrustRLwi→b(ϕ)〉 | wi ∈ W}

where W is the subset of witnesses whom the agent has selected to be its
sources of information. The next step is to aggregate these values to obtain
a single value for the witness Reputation. As we said before, however, it
is possible that this information be wrong or biased. The agent has to be
careful to give the right degree of reliability to each piece of information.
The importance of each piece of information in the final reputation value
will be proportional to the witness credibility.

Two different methods are used to evaluate the witness credibility.

The first method is based on the social structure among the witness, the
target agent and the source agent. The idea is similar to that used to
calculate the neighbourhood reputation. We define socialCr(a,wi, b) as
the credibility that agent a gives to wi when wi is giving information
about b, taking only into account the social relations among a, wi and b.

ReGreT uses fuzzy rules [43] to calculate how the structure of social rela-
tions influences the credibility on the information. The antecedent of each
rule is the type and degree of a social relation (the edges in a sociogram)
and the consequent is the credibility of the witness from the point of view
of that social relation. For example:

IF coop(wi, b) is high
THEN socialCr(a,wi, b) is very low

that is, if the level of cooperation between wi and b is high then the
credibility that the information coming from wi related to b has, from the
point of view of a, is very low. The heuristic behind this rule is that a
cooperative relation implies some degree of complicity between the agents
that share this relation so the information coming from one about the
other is probably biased.

Which relations are relevant to calculate the credibility depends on the
meaning that each relation type has in the specific agent community. In
a SuppWorld scenario, for instance, a trade relation cannot cast any light
on the credibility of the information coming from the agents involved in
that relation (always from the point of view of social analysis). In other
scenarios, however, this could be the other way around.

Following with the SuppWorld scenario, from the set of social relations
only the cooperative relation (coop) and the competitive (comp) relation
are relevant to calculate a measure of credibility. Hence, together with
the “no relation” (no rel) possibility there are 9 social structures to be
considered as shown in Figure 4.
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Figure 4: Relevant social structures in a SuppWorld scenario to evaluate credi-
bility.
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Figure 5: Intensity of a social relation.
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Figure 6: Fuzzy sets for the variable socialCr(a,wi, b).

Figure 5 shows the fuzzy sets —that give the meaning of the intensity
labels used on the arcs of the sociogram— for the values coop(wi, a),
coop(wi, b), comp(wi, a), and comp(wi, b), and figure 6 shows the fuzzy
sets for the variable socialCr(a,wi, b). The variable no rel is boolean. Ta-
ble 1 shows a possible set of fuzzy rules. Note that a great percentage of
the rules tend to be “pessimistic”. This is because in those cases where it
is not clear that the behaviour is going to be good, we think it is preferable
to be cautious. At this moment the kind of influence of each social struc-
ture is hand-coded and based on human common sense. An improvement
would be the use of a rule learning mechanism to automate the process.

IF coop(wi, a) is l THEN socialCr(a, wi, b) is h

IF coop(wi, a) is m THEN socialCr(a, wi, b) is vh

IF coop(wi, a) is h THEN socialCr(a, wi, b) is vh

IF comp(wi, a) is l THEN socialCr(a, wi, b) is m

IF comp(wi, a) is m THEN socialCr(a, wi, b) is l

IF comp(wi, a) is h THEN socialCr(a, wi, b) is vl

IF coop(wi, b) is l THEN socialCr(a, wi, b) is m

IF coop(wi, b) is m THEN socialCr(a, wi, b) is l

IF coop(wi, b) is h THEN socialCr(a, wi, b) is vl

IF comp(wi, b) is l THEN socialCr(a, wi, b) is m

IF comp(wi, b) is m THEN socialCr(a, wi, b) is l

IF comp(wi, b) is h THEN socialCr(a, wi, b) is vl

IF no rel(wi, b) AND no rel(wi, a)
THEN socialCr(a, wi, b) is h

Table 1: Social credibility fuzzy rules.

The second method used in the ReGreT system to calculate the credibility
of a witness is to evaluate the accuracy of previous pieces of information
sent by that witness to the agent. The agent is using the direct trust
value (see section 3.3) to measure the truthfulness of the information
received from witnesses. For example, an agent a receives information
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from witness w about agent b saying agent b offers good quality prod-
ucts. Later on, after interacting with agent b, agent a realizes that the
products that agent b is selling are horrible. This will be reflected in
the value of the direct trust associated to the aspect offers good quality
〈DT a→b(offers good quality),DTRLa→b(offers good quality)〉. If the di-
rect trust value is low (near -1) it means agent b is offering bad products
and therefore that agent w was giving wrong information.

Summarizing, what an agent a is using to evaluate the accuracy of a
witness w are pairs of tuples of the form:

〈Trustw→b(ϕ),TrustRLw→b(ϕ)〉
〈DT a→b(ϕ),DTRLa→b(ϕ)〉

with b ∈ B and ϕ ∈ Φ, where B is the set of agents in that society and Φ
the set of behavioural aspects.

One important property that has to be remarked about these tuples is that
they are not static. They change through time either because the agent
collects more direct experiences that modify the perspective it has on the
target agent (giving or not more credibility to the witness) or because
the agent obtains new information from the witness that overwrites the
previous one. Only the most recent information referred to a specific
target agent and behavioural aspect from a given witness is stored in
the information data base (IDB). Giving the witnesses the opportunity
to rectify previous information we are allowing them to correct previous
mistakes.

By comparing the trust value assigned by the witness with its own percep-
tion of the target agent (represented by the direct trust value) the agent
obtains the degree of truth of that piece of information. However, there is
an important aspect we have not considered up to now. When the trust
values are very different but the reliability assigned by the witness is very
high and the reliability of the direct trust is very low, the agent should
decrease the credibility of the witness when it is almost sure that the direct
trust value the agent has calculated is wrong due to lack of knowledge?
What happens if it is the other way around? Is it sensible to decrease the
trustworthiness of the witness when the witness itself was giving advice
about the weakness of the information by means of the reliability value?
Clearly, the method used to evaluate the accuracy of a piece of informa-
tion has to take much into account the reliability values associated to the
trust values in order to decide when the accuracy measure is relevant or
not.

There are three main situations the model has to consider:

– DTRL ≈ 0. The agent does not have enough direct knowledge to
judge the truthfulness of what the witness is saying.
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– TrustRL ≈ 0. The witness recognizes the weakness of the given
information. Therefore that information cannot be used to judge the
credibility of the witness.

– DTRL ≈ 1, TrustRL ≈ 1. The witness is very confident about the
information and the agent has enough direct knowledge to judge the
truthfulness of that information (and therefore the credibility of the
witness).

This can be easily modelled using the product between TrustRL and
DTRL as a factor of relevance for the comparison. Given a piece of in-
formation I = 〈Trustw→b(ϕ),TrustRLw→b(ϕ)〉 ∈ IDBa,w, we define the
relevance of that information as:

σI = TrustRLw→b(ϕ) ·DTRLa→b(ϕ)

The formula used in the ReGreT system to evaluate the credibility of a
witness considering the accuracy of previous information received from
that witness is:

infoCr(a,w) =

∑
I∈IDBa,w

σ>0.5
σI ·Ap0(Trustw→b(ϕ)−DT a→b(ϕ))∑

I∈IDBa,w
σ>0.5

σI

where IDBa,w
σ>0.5 is defined as {I ∈ IDBa,w : σI > 0.5}. Imposing the re-

striction of using only those pieces of information with a relevance greater
than 0.5 we ensure a minimum quality on the result. The function Ap0 is
depicted in fig 7. If the difference (Trustw→b(ϕ)−DT a→b(ϕ)) is near 0 it
means the witness coincides with the agent (and therefore we have a value
for the credibility near 1), on the contrary if the difference shows a value
near 2 or -2, it means the witness information is different to what the
agent has experienced by itself. The conclusion is that the witness is lying
and we obtain value for the credibility of that witness (always associated
to that specific piece of information) near 0.

Similar to the case of the direct trust, the ReGreT system calculates a
measure of reliability for the credibility value infoCr. Again, we use the
number of values considered for the calculation and the variability of those
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values as a measure of that reliability. The formula to calculate the relia-
bility of a given infoCr value is:

infoCrRL(a,w) = Ni(IDBa,w
σ>0.5) · (1−Dv(IDBa,wσ>0.5))

where

Ni(IDBa,w
σ>0.5) =


sin

(
π·|IDBa,w

σ>0.5|
2·itm

)
|IDBa,w

σ>0.5| ≤ itm

1 otherwise

Dv(IDBa,w
σ>0.5) =

∑
I∈IDBa,w

σ>0.5
(σI · |A|)∑

I∈IDBa,w
σ>0.5

σI

with A = Ap0(Trustw→b(ϕ)−DT a→b(ϕ))− infoCr(a,w).

We consider that the credibility calculated considering the accuracy of
previous pieces of information (infoCr) is more reliable than the credibility
based on social relations (socialCr). While the analysis of social relations
is based on expected behaviours, the analysis of previous information is
based on particular facts from the witness the agent wants to evaluate.
However, in those situations where there is not enough information to
calculate a reliable infoCr value, the analysis of social relations can be
a good solution. Usually, social relations are easier to obtain than the
necessary information to calculate a reliable infoCr value. To define the
credibility that a witness wi deserves to an agent a when it is giving
information about an agent b we have to differentiate several possibilities:

– Both values (infoCr and socialCr) can be calculated. The agent uses
the infoCr value if it is reliable, if not, it uses the credibility based
on social relations. The formula for this situation is:

witnessCr(a,wi, b) = infoCrRL(a,wi) · infoCr(a,wi) +
(1− infoCrRL(a,wi)) · socialCr(a,wi, b)

– The socialCr value is not available (the agent does not have enough
social information to calculate it). In this situation we have to dif-
ferentiate two cases:

If (infoCrRL > 0.5) witnessCr(a,wi, b) = infoCr(a,wi)
Otherwise witnessCr(a,wi, b) = 0.5

– The infoCr value is not available (the agent does not have direct
experiences to evaluate if the information from the witness is reliable
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or not). Again there are two possibilities:

If (socialCr is available) witnessCr(a,wi, b) = socialCr(a,wi)
Otherwise witnessCr(a,wi, b) = 0.5

The default value of 0.5 used when there is not enough information to
judge the credibility of a witness depends on how credulous the agent is.

• Witness reputation

Now we have all the elements to calculate a witness reputation and its
associated reliability value considering that the information coming from
the witnesses can be wrong or biased. The formulae in the ReGreT system
to calculate these values are:

R
a

W→b
(ϕ) =

∑
wi∈W

ωwib · Trustwi→b(ϕ)

RL
a

W→b
(ϕ) =

∑
wi∈W

ωwib ·min(witnessCr(a,wi, b), T rustRLwi→b(ϕ))

where ωwib = witnessCr(a,wi,b)P
wj∈W witnessCr(a,wj ,b)

These formulae require some explanations. To calculate a witness repu-
tation the agent uses the normalized credibility of each witness to weight
its opinion in the final value. For the calculation of the reliability, we
want that each individual contributes in the same proportion that it has
contributed for the calculation of the reputation value. Therefore, the
agent uses in the reliability formula the same weights that are used in the
reputation formula.

To calculate the reliability of a witness opinion, the agent uses the min-
imum between the witness credibility and the reliability value that the
witness itself provides. If the witness is a trusty agent, the agent can
use the reliability value the witness has proposed. If not, the agent will
use the credibility of the witness as a measure for the reliability of the
information.

3.4.2 Neighbourhood reputation

The trust on the agents that are in the neighbourhood of the target agent
and their relation with it are the elements used to calculate what we call the
Neighbourhood Reputation. Neighbourhood in a MAS is not related with the
physical location of the agents but with the links created through interaction.
The main idea is that the behaviour of these neighbours and the kind of relation
they have with the target agent can give some clues about the behaviour of the
target agent. We note the set of neighbours of agent b as Nb = {n1, n2, · · · , nn}.
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Figure 8: Fuzzy sets for variables DT a→ni
and Rep

a
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.

To calculate a Neighbourhood Reputation the ReGreT system uses fuzzy
rules. The antecedents of these rules are one or several direct trusts associated
to different behavioural aspects and the relation between the target agent and
the neighbour. The consequent is the value for a concrete reputation (that can
be associated to the same behavioural aspect of the trust values or not).

The application of these rules generates a set of individual neighbourhood rep-
utations noted as R

a
ni→b

(ϕ). For instance, using again the SuppWorld scenario,
an example could be:

IF DT a→ni(offers good quality) is X AND coop(b, ni) > low
THEN R

a
ni→b

(offers good quality) is X
IF DTRLa→ni

(offers good quality) is X’ AND coop(b, ni) is Y’
THEN RL

a
ni→b

(offers good quality) is T(X’, Y’)

In other words, we are saying that if the neighbour of the target agent is
offering good quality products and there is a relation of cooperation between the
target and this neighbour, then the target is also assumed to offer good quality
products. Here, a neighbour of agent b is an agent that has a coop relation with
it. The fuzzy sets for variables DT a→ni and R

a
ni→b

are shown in figure 8 and
the fuzzy sets for variable RL

a
ni→b

are shown in figure 9.
Finally table 2 shows a possible set of values for function T .

X’ Y’ l m h

vl vl vl vl
l vl vl l
m vl l m
h l m h
vh m h vh

Table 2: Function T used in reliability rules.

As we have said, instead of relying on the performed actions of the target
agent, Neighbourhood reputation is using prejudice as a mechanism for evalu-
ation. In human societies the word “prejudice” refers to a negative or hostile

22



0 1 
0 

1 

very_low 
(vl) 

low 
(l) 

moderate 
(m) 

very_high 
(vh) 

high 
(h) 

Figure 9: Fuzzy sets for variable RL
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attitude toward another social group, usually racially defined. However we
are not talking about human societies where prejudice is without any doubt
blameworthy. We are talking about virtual environments populated by soft-
ware agents. We think that the use of prejudice in the context of agents has a
positive aspect. If an agent knows the others are judging it in part because of its
partners, it will be careful to choose the right partners and avoid cheaters that
perhaps at the beginning can offer better deals but at the end will deteriorate
its reputation in front of the community. Moreover, the modular design of the
ReGreT reputation model allows to cancel the influence of one type of reputa-
tion (in this case the Neighbourhood reputation) if it is not useful or convenient
in a given environment.

The general formulae we use to calculate a neighbourhood reputation and its
reliability are similar to those used to calculate a witness reputation:

R
a

N→b
(ϕ) =

∑
ni∈Nb

ωnib ·R
a

ni→b
(ϕ)

RL
a

N→b
(ϕ) =

∑
ni∈Nb

ωnib ·RL
a

ni→b
(ϕ)

where ωnib =
RL

a
ni→b

(ϕ)P
nj∈Nb

RL
a

nj
→b

(ϕ)

In this case we are using the reliability of each neighbourhood reputation
value to weight the contribution to the final result, both for the reputation and
the reliability.

3.4.3 System reputation

The idea behind System reputations is to use the common knowledge about
social groups and the role that the agent is playing in the society as a mechanism
to assign default reputations to the agents. We assume that the members of
these groups have one or several observable features that unambiguously identify
their membership. The idea behind system reputation is similar to the idea
behind neighbourhood reputation. As we have seen, Neighbourhood reputation
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focus on reduced groups of agents where the links between their members can
not always be easily recognized by the agents that do not belong to the group.
On the contrary, the groups considered by system reputation are usually mid to
big sized and their members can be easily identified. We assume that the role
that an agent is playing and the group (or groups) it belongs to is something
“visible” and unambiguous for the other agents in that society.

Each time an agent performs an action we consider that it is playing a
single role. An agent can play the role of buyer and seller but when it is
selling a product only the role of seller is relevant. Although we can think
up some situations where an agent can play two or more different roles at a
time, we consider that there is always a predominant role and the others can be
disregarded.

The knowledge necessary to calculate a system reputation is usually inherited
from the group or groups to which the agent belongs to. Each group provides
knowledge about different aspects. We share the stance that groups influence
the point of view of their members [22].

System reputations are calculated using a table for each social group where
the rows are the roles the agent can play for that group, and the columns the
behavioural aspects.

Table 3 shows an example of system reputations for agents that belong to
company B from the point of view of an agent of company A. As you notice,
in this case the opinion of company A toward agents in company B is not very
good.

offers good prices offers good quality delivers quickly pays on time

seller -0.6 -0.8 -0.6 -

buyer - - - -0.6

Table 3: Example of system reputations.

Using a similar table we would define the reliability for these reputations.
System reputations are noted as R

a
S→b

(ϕ) and its reliability as RL
a

S→b
(ϕ).

Hence, for example, using the table defined above, we have thatR
a

S→b
(pays on time) =

−0.6 where b is a buyer that belongs to company B.
The degree of influence that the group or groups to which the agent belongs

to have on it, will fix the reliability assigned to system reputation.

3.4.4 Combining reputation types

In the previous section we have gone through the three different reputation types
considered in the ReGreT reputation model. To these reputation types we have
to add a fourth one, the reputation assigned to a third party agent when there
is no information at all: the default reputation. This reputation is noted as
R
a

D→b
(ϕ). Usually this will be a fixed value for all b and ϕ values, however we

give the possibility to assign different default reputation values depending on
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the behavioural aspect (for example, in certain situations the agent could be
more trusting). Anyway, what is important is that the default reputation is
always available. Similarly to other reputation types, there is also a reliability
value associated to the default reputation noted as RL

a
D→b

(ϕ).
In this section we will show how these reputations are combined to obtain

a single reputation value. As we have seen, each reputation type has different
characteristics and there are a lot of heuristics that can be used to aggregate the
four reputation values to obtain a single and representative reputation value.
The heuristic we propose here is based on the default and calculated reliability
assigned to each type.

Assuming we have enough information to calculate all the reputation types,
we have the stance that witness reputation is the first type that should be con-
sidered followed by the neighbourhood reputation, system reputation and finally
the default reputation. This ranking, however, has to be subordinated to the
calculated reliability for each type.

Given that, we define the reputation that an agent a assigns to an agent b
associated to certain behavioural aspect ϕ as:

Ra→b(ϕ) =
∑

i∈{W,N,S,D}

ξi ·Ra i→b
(ϕ)

and similarly for reliability:

RLa→b(ϕ) =
∑

i∈{W,N,S,D}

ξi ·RLa i→b
(ϕ)

Following the ranking we have established before, the factors {ξW , ξN , ξS , ξD}
we use in the general formula are:

ξW = RL
a

W→b
(ϕ)

ξN = RL
a

N→b
(ϕ) · (1− ξW )

ξS = RL
a

S→b
(ϕ) · (1− ξW − ξN )

ξD = 1− ξW − ξN − ξS

That is, we want the agent to give more relevance to the witness reputation in
detriment of the others. If the witness reputation has a low degree of reliability
(for instance because the witnesses are not reliable) then the agent will try to
use the neighbourhood reputation. If the agent has a poor knowledge of the social
relationships and as result of that the reliability of the neighbourhood reputation
is low, it will try to use the system reputation. Finally it will use the default
reputation.

3.5 Putting all together: the trust model

As showed in figure 1 the ReGreT system considers two elements to calculate
the trust on an agent: the reputation of that agent and the direct trust (that
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Figure 10: Ontological structure for a buyer in the SuppWorld scenario.

is, the result of direct experiences).
As we have argued, direct trust is a more reliable source of information than

reputation. Using the same approach that for the reputation calculation we
define the trust that an agent b deserves to an agent a on certain behavioural
aspect ϕ as:

Trusta→b(ϕ) = DTRLa→b(ϕ) ·DT a→b(ϕ) +
(1−DTRLa→b(ϕ)) ·Ra→b(ϕ)

TrustRLa→b(ϕ) = DTRLa→b(ϕ) ·DTRLa→b(ϕ) +
(1−DTRLa→b(ϕ)) ·RLa→b(ϕ)

If the agent has a reliable direct trust value, it will use that as a measure of
trust. If that value is not so reliable then it will use reputation.

3.6 Ontological dimension

Up to now we have shown how to calculate reputation and trust values linked
to behavioural aspects that refer to a single issue of a contract. With the
ontological dimension we add the possibility of combining these reputations
and trust values associated to simple behaviours to calculate the reputation
and trust of more complex behaviours.

To represent the ontological dimension we use graph structures. Figure 10
shows an example of a simple ontology structure for a buyer in the SuppWorld
scenario.

In this case, being a good seller implies delivering products quickly, offering
good products, offering good quality and maintain agreed quantities. The buyer
gives more relevance to the quality and price of the products to decide if a seller
is a good seller or not.

To calculate a given trust taking into account the ontological dimension, an
agent has to calculate the value of each of the related aspects that, in turn,
can be the node of another subgraph with other associated aspects. The trust
values for those nodes that are related with an atomic aspect of the behaviour
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(in the example: deliver quickly, offer good prices, offer good quality and main-
tain agreed quantities), are calculated using the methods we have presented in
the previous sections. Note that an ontology structure can be applied to differ-
ent parts of the system. The agent can use the ontology either to calculate a
reputation value or to calculate a trust value.

The trust over an internal node ψ is computed as follows:

Trusta→b(ψ) =
∑

ϕ∈children(ψ)

ωψϕ · Trusta→b(ϕ)

TrustRLa→b(ψ) =
∑

ϕ∈children(ψ)

ωψϕ · TrustRLa→b(ϕ)

For instance, using the ontological structure in figure 10 we can calculate
the trust on b as a good seller from a’s perspective using the formula:

Trusta→b(good seller) = 0.3 · Trusta→b(deliver quickly) +
0.4 · Trusta→b(offer good prices) +
0.4 · Trusta→b(offer good quality) +
0.3 · Trusta→b(maintain agreed quantities)

TrustRLa→b(good seller) = 0.3 · TrustRLa→b(deliver quickly) +
0.4 · TrustRLa→b(offer good prices) +
0.4 · TrustRLa→b(offer good quality) +
0.3 · TrustRLa→b(maintain agreed quantities)

The same ontological structure could be used to calculate the reputation of
being a good seller.

Note that the importance (ωψϕ) of each aspect is agent dependent and not
necessarily static. The agent can change these values according to its mental
state.

4 CREDIT

CREDIT is a computational trust model (Confidence and REputation Defining
Interaction-based Trust) that is similar to the previous model. It combines
confidence, on an agent built from direct interactions and reputation that is
gathered from the experiences of other agents in the community, gossips or by
analyzing signals send by the agent. The difference here the method based on
fuzzy sets used to compute these measures. 2

2Fuzzy sets are here used to characterise the inherent imprecision in the perception of
the performance of an opponent and to provide agents with a high-level means of assessing
the extent to an opponent satisfies the issues of a contract. Thus an opponent may be
characterised as having a high degree of membership to the fuzzy set ‘delivery-on-time’ and
a low membership to the fuzzy set ‘sells-high-quality’ to denote that it is expected to deliver
on time and sell goods of relatively poor quality.
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The use of norms of the environment is a differentiating factor in evaluating
the trust of opponents. In so doing, it prevents agents from trusting those op-
ponents that are only performing well because of the prevailing norms. Further
CREDIT allows interacting agents, with different norms, to negotiate those is-
sues for which they have different expected values (guided by the norms) and
avoid negotiating over those issues for which they have coherent expectations.
This, in turn, minimises losses and saves negotiation time. Finally trust can be
used to adjust the stance that an agent takes during negotiation so as to min-
imize the utility loss incurred when it believes its opponent is likely to defect
by different degrees from a signed contract. To summarize, CREDIT not only
consists of the basic constructs needed to build meaningful measures of trust,
it contains the hooks that allow an agents reasoning mechanism to use measure
of trust in trust based negotiation (TBN).

In the context of OpenKnowledge, as we use electronic institutions(a reg-
ulated environment) to model services, agents enacting the institutions always
needs to abide by the norms set by the institution. Where as the heterogeneity
of agents and the openness assumption introduces agents from different social
settings and belonging to different groups to interact in an institutional context.
Thus a norm based evaluation of trust is very relevant here, as it enables the
agents to negotiate those issues that is outside of the institutional norms but
comes within the social or group norms. Trust has a different interpretation
when used in a normative system, for instance an agent delivering a service on
time by abiding an institutional norm may not do so if such a norm is not in
place. We can model such aspects of trust using the CREDIT model.

The following subsections describe the CREDIT trust model using confi-
dence, reputation, and norms and provides an analysis of the computational
complexity involved in the algorithm used in CREDIT, then how CREDIT can
be used to influence interactions and empirically evaluates the properties of
CREDIT.

4.1 CREDIT model

Let Ag be the society of agents noted as α, β, ... ∈ Ag. A particular group of
agents is noted as G ⊆ Ag and each agent can only belong to one group. T
denotes a totally ordered set of time points (sufficiently large to account for all
agent interactions) noted as t0, t1, . . ., such that ti > tj if and only if i > j.

4.1.1 Contracts

Contracts are agreements about issues and the values these issues should have.
Let X = {x, y, z, . . .} be the set of potential issues to include in a contract, and
the domain of values taken by an issue x be noted as Dx. Then, a particular
contract, O, is an arbitrary set of issue-value assignments noted as O = {x1 =
v1, x2 = v2, ..., xn = vn} where xi ∈ X, vi ∈ Dxi , and O ∈ O which denotes the
set of potential contracts. Given an agreed contract, two or more agents all have
a subset of the contract to enact. Each subset of the contract allocated to an
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agent is superscripted by the respective agent identifier such that, for example,
in a contract O between α and β, Oα ∪ Oβ = O. An agent, α, has a utility
function for contracts, noted as Uα : O → [0, 1], and for each issue x ∈ X(O) in
a contract noted as Uαx : Dx → [0, 1]. Here the utility of a contract, for an agent
is defined, as an aggregation of the weighted utilities of the individual issues as
shown below (note this assumes that issues are independent):

Uα(O) =
∑

x∈X(O)

ωx · Uαx (vx) (1)

where
∑
ωx = 1 and vx ∈ Dx is the value taken by the issue x ∈ X(O). Here it is

considered that agents, whether from the same group or from different groups,
invariably interact within some institutional norms(e.g electronic institutions
[13] ). CREDIT take into account three general set of norms/rules,(i) Social
rules, noted as SocRules, that all agents in the society Ag possess in common,
(ii) Group rules, noted as GroupRules(G), that all agents within a particular
group G ⊆ Ag have in common, and (iii) Institutional rules, noted as InstRules,
that agents α and β interacting within a particular institution must abide by.
Institutional rules may be common to both the interacting agents, where as
social rules and group rules are specific to a society or a group and may not
be the same for both the interacting agents. Hence its expected utility value
should be highlighted. Irrespective of the classification, rules allow an agent to
infer expected issue-value assignments from a contract. Here the rules will be
written in the following way:

If x1 = v1 and x2 = v2 and ... and xm = vm Then x = v

meaning that if (xi = vi) ∈ O for all i = 1, . . . ,m, then issue x’s value is expected
to be equal to v. The unspecified expectations due to the social setting, Oαexp, of
issue-value assignments from O is the set of all conclusions of the rules of agent
α, Rules(α) = SocRules ∪ GroupRules(G1) and InstRules (that apply to α
and β), that have their premise satisfied by the equalities in the contract O. We
can expand the contract O, with the above expectations. The issues contained
in the expanded contract may vary (for the same contract O) depending on
the group and institutional rules that apply at the time the agents make an
agreement. This is because an agent may interact under different institutions
(having different institutional norms) or an agent may decide to switch groups
to one that has different norms from its original group. Given the expanded
contract, an agent may then decide to trust its opponent depending on its prior
knowledge of its opponent’s performance.

4.2 Confidence

In CREDIT, confidence is defined as

α’s confidence in an issue x handled by β is a measure of certainty
(leading to trust), based on evidence from past direct interactions
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with β, which allows α to expect a given set of values to be achieved
by β for x.

Thus if α has a high degree of confidence with respect to x then it will know
what value β is likely to return for x. This value can of course be good for α (give
it high utility) or bad (give it low utility). These measures of imprecision on
an opponent’s behaviour are not strictly probabilistic in nature since they may
involve a subjective appreciation of performance as well. Given this, CREDIT
takes a fuzzy set based approach to relate confidence levels with expected values
for issues.

Agent α’s confidence level is defined as the membership level, measured over
[0, 1], of the behaviour of a particular agent β with respect to an issue x to
a linguistic term L, noted as C(β, x, L). The cut of the fuzzy set defined by
C(x, L) represents a range (on the horizontal axis) of values:

E∆Uc(x, L) = {δu ∈ [−1, 1] | µL(δu) ≥ C(x, L)} (2)

that is understood as the range of expected utility deviations at execution time
on issue x by agent β. For instance, α may express its belief that β is ‘Good’ to
a confidence level 0.6 in fulfilling the contractual values on price, ‘Average’ to
a level of 0.25, and ‘Bad’ to a level of 0. This would mean that α expects the
utility deviation to lie within the range of values which support the confidence
level of 0.6 for ‘Good’, 0.25 for ‘Average’, and 0 for ‘Bad’.

4.2.1 Evaluating Confidence

Given a a proposed (not yet agreed) contract O, for each issue x in X(O), we
can estimate, from the history of past interactions, a probabilistic distribution
P of α’s utility variation ∆Ux ∈ [−1, 1] (negative or positive) relative to issue x.
Values of ∆Ux correspond to the possible differences between the utility Ux(v)
of the agreed value (x = v) ∈ O and the utility Ux(v′) of the (unknown) final
value (x = v′) in the executed contract O′ (i.e. ∆Ux = Ux(v) − Ux(v′)). Then
we can say that the agent α has a certain risk with issue x when it estimates
that 1 ≥ q > 0 where q is the probability that ∆Ux < 0. Of course, the more
positive the mean, ∆Ux, of this probability distribution (i.e. the higher the
expected utility loss), the higher the risk, and the more positive this mean is,
the lower the risk (i.e. the lower the expected utility loss).

Now, assume we have a probability distribution P for ∆Ux. In order to
determine confidence levels C(x, L) we initially need to determine a significantly
representative interval [δ1, δ2] for ∆Ux (e.g. such that the probability that (δ1 ≤
∆Ux ≤ δ2) is equal to 0.95).

Finally, to calculate confidence levels C(x, L) for each label L ∈ L, we want
the interval [δ1, δ2] to coincide as much as possible with the set of expected
values E∆Uc(x) as computed in equation 2. Since this range is defined by the
confidence levels of its limits, the procedure amounts to selecting the minimum
confidence levels of the two limits for that label as shown in equation 3.
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C(x, L) = min(µL(δ1), µL(δ2)) (3)

4.3 Reputation

An agent’s reputation is the perception of a group or groups of agents in the
society about its abilities and attributes. This model assumes that reputation
is simply available from a social network that structures the knowledge that
each agent has of its neighbours and keeps track of past interactions as per the
ReGreT model discussed above. Here reputation is defined as the following:

α’s estimate of β’s reputation in handling an issue x is α’s measure of
certainty (leading to trust), based on the aggregation of confidence
measures (for x) provided to it by other agents which have previously
interacted with β, which allows α to expect a given set of values to
be achieved by β for x

Hence, we assume that an agent α possesses a function Rep : Ag×X×L → [0, 1]
where Rep(β, x, L) represents the reputation of an agent β in handling issue x
with respect to the qualifying label L (the name of the agent will be omitted
when the context unambiguously determines it). We also assume that the labels
L ∈ L have their domain specified over the same range of utility deviations (i.e.
∆U ∈ [−1, 1]).

4.4 Combined Confidence and Reputation Measures

A combination of both measures helps to balance both the societal view on an
opponent and the personal view of the agent until the latter can be sure that
its own view is more accurate. We assume in this work that the reputation
values expressed by each agent in the society represent their confidence val-
ues on the behaviour of a given agent. In other words a value Rep(β, x, L)
represents an aggregation of different confidence values.3 To come to this
conclusion, each agent will have its own threshold on the number of interac-
tions needed to have this accurate measure. Therefore, given agent α’s context
Σα,β = 〈CB, {Uαx }x∈X , Rules(α), tc〉, here we propose to define the threshold κ
as κ = max(1, |CBα,β |/θmin), where |CBα,β | is the number of interactions of α
with β and θmin is the minimum number of interactions (successful negotiations
and completed executions4) above which only the direct interaction is taken into
account [?].

Thus, we capture the combination of confidence and reputation measures
through the function CR : Ag ×X × L → [0, 1], which is, in the simplest case,

3We are therefore implicitly assuming that all these measures are commensurate (i.e have
the same meaning and are based on the same scale), and hence their aggregation make sense.

4It is important to specify that only those completed interactions should be taken into
account since only these can give us information about the behaviour of the opponent in
its execution of contracts. Negotiations could end up in no agreements and these should be
excluded when counting interactions in the case base.
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a weighted average of both kinds of degrees (as in the previous cases we omit
references to the agent whenever possible):

CR(x, L) = κ · C(x, L) + (1− κ) ·Rep(x, L), (4)

Given CR levels it is then possible to compute the expected values for an issue
x and label L as:

E∆Ucr(x, L) = {u | µxL(u) ≥ CR(x, L)} (5)

and then the intersection of the expected ranges for all the labels L ∈ L:

E∆Ucr(x) =
⋂
L∈L

E∆Ucr(x, L) . (6)

As can be seen, the above range is defined in terms of the utility deviations
rather than in terms of the values that the issue could take. However, at ne-
gotiation time, for example we might need to compute the expected values an
issue could take, after execution of the contract, given an offered value v0 for the
issue. This requires transferring the expected utility deviations to the domain
of the issue considered.This can be computed in the following way:

EVcr(x, v0) = {v ∈ Dx | Ux(v)− Ux(v0) ∈ E∆Ucr(x)} (7)

4.5 Trust

In our trust model we use the combined degrees {CR(x, L)}L∈L, as given by
equation 4, to define the interval of expected values E∆Ucr(x), that provides us
with a maximum expected loss in utility ∆cr

loss = sup(E∆Ucr(x)). This maxi-
mum expected utility loss represents the risk that is involved in the interaction
given knowledge acquired both from direct interactions and reputation and also
from the norms of the environment. While the risk describes how much we
expect to lose from an interaction, trust is the opposite of this. Thus we define
trust as:

T (α, β, x) = min(1, 1−∆cr
loss) (8)

where T serves to describe trust in β for issue x based on both confidence in β
and its reputation with respect to issue x.

Here, we choose to bound trust values5 in the range [0, 1] where 0 represents
a completely untrustworthy agent (and corresponds to the maximum possible
utility loss) and 1 represents a completely trustworthy agent (and corresponds
to zero utility loss).6

5We acknowledge that other bounds may be applied in other trust models (e.g. [−1, 1] as
in [25] or [0,∞] in eBay). See [25] for a wider discussion on the meaning of the bounds on the
rating.

6Our choice for the bounds of [0, 1] serves to simplify the analysis when normalising all
trust ratings in issues and over contracts.
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In any case, we can now define the trust T (α, β,X(O)) of an agent α in
an agent β over a particular set X(O) = {x1, ..., xk} of issues appearing in the
contract O (or in the expanded one O+) as an aggregation of the trust in each
individual issue (e.g. trust in delivering on time, paying on time and the product
having the quality specified in the contract). That is, we postulate:

T (α, β,X(O)) = agg(T (α, β, x1), ..., T (α, β, xk)) (9)

where agg : [0, 1]k → [0, 1] is a suitable aggregation function7. If some issues are
considered to be more important than others, the aggregation function should
take this into consideration. This can be achieved by means of different weights8

given for each issue xi ∈ X(O) (the higher the weight, the more important the
issue). A typical choice would be to take the aggregation9 function as a weighted
mean:

T (α, β,X(O)) =
∑
xi∈X′

wi · T (α, β, xi) (10)

where
∑
wi = 1 and 0 ≤ wi ≤ 1.

5 Information based model of trust

This model of trust is based on information theory. It is developed from the
observation that any illocutionary exchange between agents give away informa-
tion, which can be used to build information models of them. Argumentative
dialogues change this information model with respect to the ongoing relation-
ship between them. This temporal model builds up trust measures which in
turn can be used to select partners for collaboration or to select strategies for
argumentation with the chosen partner.

In the context of open communities like OpenKnowledge, where heterogenity
of agents is rather the norm, a trust model based on information theory is
particularly suited as it assumes almost nothing about the agents, nor about
the environment. But builds up a model dynamicaly based on argumentation.
It is further based on commitments, thus assumes nothing about the internal
architecture of the agents[beliefs, intentions]. Another feature is its honour
model, a measure of the integrity of the information exchanged [in appeals] and
conditional promises made [in threats and rewards] which supports sustainable
partnerships over long periods.

In this section, we discuss the information based agency, information based
trust model and a case study discussing the bargaining agent. Discussion on
the honour model is not included here, as for the present we are more concerned
with individual deals, rather than long term relationships.

7Generally, an aggregation function is monotonic such that min(u1, ..., uk) ≤
g(u1, ..., uk) ≤ max(u1, ..., uk) (see [16] for a survey).

8Most aggregation operators are defined parametrically with respect to weights assigned
to each component to be aggregated (see [16] for more details).

9More sophisticated aggregation models (based, for example, on different Lebesgue, Cho-
quet, or Sugeno integrals) could also be used [16].
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Figure 11: Basic architecture of agent
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The essence of “information-based agency” is described the following. An
agent observes events in its environment including what other agents actually do.
It chooses to represent some of those observations in its world model as beliefs.
As time passes, an agent may not be prepared to accept such beliefs as being
“true”, and qualifies those representations with epistemic probabilities. Those
qualified representations of prior observations are the agent’s information. This
information is primitive — it is the agent’s representation of its beliefs about
the environment, and about the other agents’ prior actions. It is independent
of what the agent is trying to achieve, or what the agent believes the other
agents are trying to achieve. Given this information, an agent may then choose
to adopt goals and strategies, to evaluate situations and to act. If an agent has
a utility function that it will have been derived from the agent’s information.
To enable the agent’s strategies to make good use of its information, tools from
information theory are applied to summarise and process it. Such an agent is
called information-based.

We assume that a multiagent system {α, β1, . . . , βo, ξ, θ1, . . . , θt}, contains
an agent α that interacts with negotiating agents, βi, information providing
agents, θj , and an institutional agent, ξ, that represents the institution where
we assume the interactions happen [4]. Institutions give a normative context
to interactions that simplify matters (e.g an agent can’t make an offer, have it
accepted, and then renege on it). δ = (a, b) is a deal between two negotiating
agents say α and β with α’s offer being a and that of β b .
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Agent α engages in multi-issue negotiation with a set of other agents: {β1,
· · · , βo}. The foundation for α’s operation is the information that is generated
both by and because of its negotiation exchanges. Any message from one agent
to another reveals information about the sender. α also acquires information
from the environment — including general information sources — to support its
actions. α’s aim may not be “utility optimisation” — it may not be aware of a
utility function. Our approach does not necessarily reject utility optimisation —
the selection of a goal and strategy follows the exploitation of the information.

In addition to the information derived from its opponents, α has access to
a set of information sources {θ1, · · · , θt} that may include the marketplace in
which trading takes place, and general information sources such as news-feeds
accessed via the Internet. An institution agent, ξ, accurately reports to each
agents on the execution of commitments, and the fulfilment of promises that
involve that agent. The role of the institution agent ξ is simply to “outsource”
the agents’ observations, so that α is self-contained, complete software agent
with the need of an “observe” operation to check whether the fish has arrived
from the fishmonger, for example. Together, α, {β1, · · · , βo}, ξ, and {θ1, · · · , θt}
make up a multiagent system.

α has two languages: C and L — these are described in Sec. ??. C is an
illocutionary-based language for communication. L is a first-order language for
internal representation — precisely it is a first-order language with sentence
probabilities optionally attached to each sentence representing α’s epistemic
belief in the truth of that sentence. Fig. 11 shows a high-level view of how
α operates. Messages expressed in C received from {θi}, ξ and {βi} are time-
stamped, source-stamped and placed in an in-box X . The messages in X are
then translated using an import function I into sentences expressed in L that
inherit the time-stamp and source-stamp, they are stored in a repository Yt.
The social model, M, is a summary of Yt and consists of a trust model and an
honour model. And that is all that happens until α triggers a goal.

α triggers a goal, g ∈ G, in two ways: first in response to a message received
from an opponent {βi} “I offer you e1 in exchange for an apple”, and second
in response to some need, ν ∈ N , “goodness, we’ve run out of coffee”. In either
case, α is motivated by a need — either a need to strike a deal with a particular
feature (such as acquiring coffee) or a general need to trade. α’s goals could be
short-term such as obtaining some information “what is the time?”, medium-
term such as striking a deal with one of its opponents, or, rather longer-term
such as building a (business) relationship with one of its opponents. So α has a
trigger mechanism T where: T : {X ∪ N} → G.

For each goal that α commits to, it has a mechanism, G, for selecting a
strategy to achieve it where G : G ×M→ S where S is the strategy library. A
strategy smaps an information base into an action, s(Yt) = z ∈ Z. Given a goal,
g, and the current state of the social model mt, a strategy: s = G(g,mt). Each
strategy, s, consists of a plan, bs and a world model (construction and revision)
function, Js, that constructs, and maintains the currency of, the strategy’s world
model W t

s that consists of a set of probability distributions. A plan derives the
agent’s next action, z, on the basis of the agent’s world model for that strategy
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and the current state of the social model: z = bs(W t
s ,m

t), and z = s(Yt). Js
employs two forms of entropy-based inference:

• Maximum entropy inference, J+
s , first constructs an information base Its

as a set of sentences expressed in L derived from Yt, and then from Its
constructs the world model, W t

s , as a set of complete probability distribu-
tions.

• Given a prior world model, Wu
s , where u < t, minimum relative entropy

inference, J−s , first constructs the incremental information base I(u,t)
s of

sentences derived from those in Yt that were received between time u and
time t, and then from Wu

s and I(u,t)
s constructs a new world model, W t

s .

5.1 A commitment based language for Negotiation and
Argumentation

In order to express and build negotiation and argumentation dialogues between
agents and to internally represent the norms, contracts and commitments, a
language needs to be defined. There also needs to be a basic ontology that
will be the seed to define this language. This ontology permits to represent the
concepts of a given domain, here in this case the domain of trading.

5.1.1 α’s Ontology

In order to define the languages that permit the modeling of agent dialogues,
we need an ontology that includes a (minimum) repertoire of elements: a set of
concepts organized in an is-a hierarchy, captured by a partial order relation, and
a set of relations defined over these concepts. We model ontologies following an
algebraic approach [21] as:

An ontology is a tuple O = (C,R,≤, σ) where:

1. C is a finite set of concept symbols (including basic data types);

2. R is a finite set of relation symbols;

3. ≤ is a reflexive, transitive and anti-symmetric relation on C (a partial
order)

4. σ : R→ C+ is the function assigning to each relation symbol its arity

where ≤ is the traditional is-a hierarchy. To simplify computations in the
computing of probability distributions we assume that there is a number of
disjoint is-a trees covering different ontological spaces (e.g. a tree for types of
fabric, a tree for shapes of clothing, and so on). R contains relations between
the concepts in the hierarchy, this is needed to define ‘objects’ (e.g. deals) that
are defined as a tuple of issues.

The semantic distance between concepts within an ontology depends on how
far away they are in the structure defined by the ≤ relation. Semantic distance
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plays a fundamental role in strategies for information-based agency. How signed
contracts, Commit(·), about objects in a particular semantic region, and their
execution, Done(·), affect our decision making process about signing future
contracts in nearby semantic regions is crucial to modelling the common sense
that human beings apply in managing trading relationships. A measure [23]
bases the semantic similarity between two concepts on the path length induced
by ≤ (more distance in the ≤ graph means less semantic similarity), and the
depth of the subsumer concept (common ancestor) in the shortest path between
the two concepts (the deeper in the hierarchy, the closer the meaning of the
concepts). Semantic similarity is then defined as:

Sim(c, c′) = e−κ1l · e
κ2h − e−κ2h

eκ2h + e−κ2h

where l is the length (i.e. number of hops) of the shortest path between the
concepts, h is the depth of the deepest concept subsuming both concepts, and
κ1 and κ2 are parameters scaling the contributions of the shortest path length
and the depth respectively.

5.1.2 α’s Languages

Agent α is in a negotiation or a trading relationship with an agent β. They aim
to strike a deal δ = (a, b) where a is α’s commitment and b is β’s. We denote
by A the set of all possible commitments by α, and by B the set of all possible
commitments by β. The agents have two languages, C for communication (il-
locutionary based) and L for internal representation (as a restricted first-order
language).10

The illocutionary particles that support negotiation and argumentation in-
clude:

ι = {Offer,Accept,Reject,Withdraw, Inform,
Reward,Threat,Appeal}

with the following syntax and informal meaning:
– Offer(α, β, δ) Agent α offers agent β a deal δ = (a, b) with action commitments
a for α and b for β.
– Accept(α, β, δ) Agent α accepts agent β’s previously offered deal δ.
– Reject(α, β, δ, [info]) Agent α rejects agent β’s previously offered deal δ. Op-
tionally, information [info] explaining the reason for the rejection can be given.
– Withdraw(α, β, [info]) Agent α breaks down negotiation with β. Extra [info]
justifying the withdrawal may be given.
– Inform(α, β, info) Agent α informs β about info and commits to the truth of
info.

10It is commonly accepted since the works by Austin and Searle that illocutionary acts are
actions that succeed or fail. We will abuse notation in this paper and will consider that they
are predicates in a first order logic meaning ‘the action has been performed’. For those more
pure-minded an alternative is to consider dynamic logic.
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– Reward(α, β, δ, φ, [info]) Intended to make the opponent accept a proposal
with the promise of a future compensation. Agent α offers agent β a deal δ. In
case β accepts the proposal, α commits to make φ true. The intended meaning
is that α believes that worlds in which φ is true are somehow desired by β.
Optionally, additional information in support of the deal can be given.
– Threat(α, β, δ, φ, [info]) Intended to make the opponent accept a proposal with
the menace of some sort of retaliation. Agent α offers agent β a deal δ. In case β
does not accept the proposal, α commits to make φ true. The intended meaning
is that α believes that worlds in which φ is true are somehow not desired by β.
Optionally, additional information in support of the deal can be given.
– Appeal(α, β, δ, info) Intended to make the opponent accept a proposal as a
consequence of the belief update that the accompanying information might bring
about. Agent α offers agent β a deal δ. Additionally, α passes a pack of informa-
tion in support of the deal. An Appeal can be understood as a combination of an
offer and an inform, that is Appeal(α, β, δ, info) = Offer(α, β, δ); Inform(α, β, info)
— we borrow ‘;’ from Dynamic Logic to mean action concatenation.
The accompanying information, [info], can be of two basic types: (i) referring
to the process (plan) used by an agent to solve a problem, or (ii) data (beliefs)
of the agent including preferences. When building relationships, agents will
therefore try to influence the opponent by changing their processes (plans) or
by providing new data.

5.2 An information based trust model for negotiation

The context of a commitment may be negotiations over individual business
deals, or argumentation over business relationships that last over a period of
time. For Individual business deals, the concept of trust is a measure of expected
deviation of behavior in executing a commitment. Precisely its a measure of how
uncertain the enactment of a commitment is. In this sense, the higher the trust
the lower the expectation that a significant deviation from what is committed
occurs.

Deviations from commitments can occur in two ways. If agent α who is
committed to execute a actually executes a′ then there are two ways in which
a and a′ may differ. First, a′ may be a variation of commitment a within the
ontological context of the negotiation. For example, α may deliver something of
slightly inferior quality and, to compensate, deliver an increased quantity of it.
Second, the contract variation may involve something outside the ontological
context. For example, if α is unable to deliver the quality of wine that was
agreed she may “throw in” a box cigars. A contract execution could involve
variations of both of these types. In the following we are primarily interested
in variations of the first type.

We describe three components that may somehow be combined to describe
our trust in an opponent:

• Trust as expected behaviour. The trust I have in an opponent is deter-
mined by my evaluation of how he behaves in comparison to my expecta-
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tions.

• Trust as expected acceptability. The trust I have in an opponent is de-
termined by my evaluation of how good his contract executions are. To
capture this we need to define what is meant by saying that a contract
execution, b′, is better or worse than the signed contract b. We assume
here that α’s acceptability, Pt(IAcc(α, β, ν, b)), is fixed from the time of
signing the contract to the time of the contract execution. So, if at the
time of signing the contract Pt(IAcc(α, β, ν, b′)) > Pt(IAcc(α, β, ν, b)) then
b′ will be preferred to b at the time of contract execution. Similarly for
those that are not preferred.

• Trust as certainty in contract execution. The trust I have in an opponent is
determined by how consistent he is in the way that he delivers acceptable
contract executions.

5.2.1 Information theoretic basis for negotiation

We ground our argumentation model on information-based concepts. Entropy,
H, is a measure of uncertainty [24] in a probability distribution for a discrete
random variable X: H(X) , −

∑
i p(xi) log p(xi) where p(xi) = P (X = xi).

Maximum entropy inference and minimum relative entropy inference are chosen
partly because of their encapsulation of common sense reasoning [30].

Maximum entropy inference is used to derive sentence probabilities for that
which is not known by constructing the “maximally noncommittal” [19] prob-
ability distribution, and minimum relative entropy inference is used to update
these distributions. These forms of inference are criticised [18] for their depen-
dence on the representation chosen — such as the way in which values for a
continuous variable are represented as intervals. We argue to the contrary, that
this choice enables the tailoring of the model in fine detail.

Let G be the set of all positive ground literals that can be constructed using
our language L. A possible world is a valuation function: G → {>,⊥}. V|Kt
denotes the set of possible worlds that are consistent with an agent’s knowledge
base Kt at time t that contains statements which the agent believes are true.
A random world for Kt is a probability distribution W |Kt = {pi} over V|Kt =
{Vi}, where pi expresses an agent’s degree of belief that the possible world Vi
is the actual world. The derived sentence probability of any σ ∈ L, with respect
to a random world W |Kt is:

(∀σ ∈ L)PW |Kt(σ) ,
∑
n

{ pn : σ is> in Vn }

The agent’s belief set Bt = {βj}Mj=1 contains statements to which the agent
attaches sentence probabilities B(·). A random world W |Kt is consistent with
Bt if: (∀β ∈ Bt)(B(β) = PW |Kt(β)). Let {pi} = W |{Kts,Bts} be the “maximum
entropy probability distribution over V|Kts that is consistent with Bts”. Given
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an agent with Kts and Bts, maximum entropy inference states that the derived
sentence probability for any sentence, σ ∈ L, is:

(∀σ ∈ L)PW |{Kt
s,Bt

s}
(σ) ,

∑
n

{ pn : σ is> in ωn } (11)

So each belief imposes a linear constraint on the {pi}. The maximum entropy
distribution: arg maxpH(p), subject to these linear constraints, is found by
introducing Lagrange multipliers.

Given a prior probability distribution q = (qi)ni=1 and a set of constraints,
the principle of minimum relative entropy chooses the posterior probability dis-
tribution p = (pi)ni=1 that has the least relative entropy with respect to q, and
that satisfies the constraints11.

[9] describes the estimation of both P (Acc(α, β, δ)) and the estimation of
P (Acc(β, α, δ)) which is α’s estimate of β’s willingness to accept δ. These es-
timates are derived by applying maximum entropy inference to the observed
behaviour of the agents. In the subsequent subsection we’ll see how α updates
its sentence probabilities for trust(·) from observation, decay and experience,
preferences and social information following receipt of the illocutionary parti-
cles

• Updating trust from decay and experience

An important aspect that we want to model is the fact that beliefs ‘evapo-
rate’ as time goes by. If we don’t keep an ongoing relationship, we somehow
forget how good the opponent was. If I stop buying from my butcher, I’m
not sure anymore that he will sell me the ‘best’ meat. This decay is what
justifies a continuous relationship between individuals. In our model, the
conditional probabilities should tend to ignorance. If we have the set of
observable contracts as B = {b1, b2, . . . , bn} then complete ignorance of
the opponent’s expected behaviour means that given the opponent com-
mits to b the conditional probability for each observable contract becomes
1
n — i.e. the unconstrained maximum entropy distribution. This natural
decay of belief is offset by new observations.

We define the evolution of the probability distribution that supports the
previous definition of decay using an equation inspired by pheromone like
models [10]:

P t+1(b′|b) = κ ·
(

1− ρ

n
+ ρ ·

(
P t(b′|b) + ∆tP (b′|b)

))
(12)

where κ is a normalisation constant to ensure that the resulting values
for P t+1(b′|b) are a probability distribution. This equation models the

11Ie: arg minp
Pn

i=1 pi log pi
qi

. The principle of minimum relative entropy is a generalization

of the principle of maximum entropy. If the prior distribution q is uniform, the relative
entropy of p with respect to q differs from −H(p) only by a constant. So the principle of
maximum entropy is equivalent to the principle of minimum relative entropy with a uniform
prior distribution.
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passage of time for a conveniently large ρ ∈ [0, 1] and where the term
∆tP (b′|b) represents the increment in an instant of time according to the
last experienced event as the following possibilities show.

• Updating trust from enacted commitments The choice of a negoti-
ating partner is influenced by the evaluation of the enacted commitments.
Eg: Accept(α, β, δ) when uttered by α has the meaning that α becomes
socially committed to deliver the deal δ — usually by a given deadline.

Agent α has the opportunity to evaluate the extent to which agent β sticks
to his commitments in Accept(·), Reward(·) and Threat(·) illocutions.
We base our measure of trust as the negative entropy of the probability
distribution of possible outcomes following such a given commitment —
trust measures the relationship between commitment and execution of
those commitments. In this way, a natural way to base our modelling
of trust is on a conditional probability, P t, between commitment and
evaluation of the enacted commitment as

P t(evaluate(ϕ′) | (ϕ))

Similarity based. The question is how to use the observation of a con-
tract execution c′ given a signed contract c in the update of the overall
probability distribution over the set of all possible contracts. Here we use
the idea that given a particular deviation in a region of the space, similar
deviations should be expected in other regions. The intuition behind the
update is that if my butcher has not given me the quality that I expected
when I bought lamb chops, then I might expect similar deviations with
respect to chicken. This idea is built upon a function f(x, y) that takes
into account the difference between acceptance probabilities and similarity
between the perception of the execution x of a contract y, that is a con-
tract for which there was an Accept(β, α, y). Thus, after the observation
of c′ the increment of probability distribution at time t+ 1 is:

∆tP (b′|b) = (1− |f(c′, c)− f(b′, b)|) (13)

where f(x, y) is

f(x, y) ={
1 if P t(Accept(x)) > P t(Accept(y))
Sim(x, y) otherwise.

and where Sim is an appropriate similarity function (reflexive and sym-
metric) that determines the indistinguishability between the perceived and
the committed contract.

Entropy based. Suppose that α observes the event (c′|c), the entropy
based approach estimates ∆tP (b′|b) by applying the principle of minimum
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relative entropy.12 Let:

(
P tC(bj |b)

)n
j=1

= arg min
p

n∑
i=1

pi log
pi

P t(bi|b)
(14)

satisfying the constraint C, and p = (pj)nj=1. Then:

∆tP (b′|b) = P tC(b′|b)− P t(b′|b) (15)

Constraint C is specified as follows in three cases: first when c = b, second
when c′ = c 6= b, and third when c′ 6= c 6= b.

First, if c = b then C is: P tC(b′|b) = P t(b′|b)+ν(1−P t(b′|b)), for ν ∈ [0, 1]
— the value of ν represents the strength of α’s belief that the probability
that (b′|b) will occur at time t+ 1 should increase if (b′|b) occurs at time
t.

Second, if c′ = c 6= b then constraint C is:

P tC(b|b) = P t(b|b) + g1(b, c)(1− P t(b|b))

for: g1 ∈ [0, 1], where g1(b, c) represents the strength of α’s belief that the
probability that (b|b) will occur at time t+1 should increase if (c|c) occurs
at time t.

Third, if c′ 6= c 6= b then suppose that c′ is preferred to c by α then
h(c′, c) = P t(Accept(c′))−P t(Accept(c)) > 0. Let B(b)+ = {x | h(x, b) >
0}, ie: the set of contract executions that α prefers to b. Given a signed
contract b, the prior probability that the contract execution will be pre-
ferred by α to b is: p(b)+ =

∑
x∈B(b)+ P

t(x|b). After observing (c′|c) we
wish to increase the probability that a preferred execution will occur for
contract b to: p(b | (c′|c))+ = p(b)++g2(b, c, c′)(1−p(b)+), where g2(b, c, c′)
represents the strength of α’s belief that the probability that execution of
contract b at time t+ 1 will be preferred to b should increase if (c′|c) oc-
curs at time t. Constraint C then is:

∑
x∈B(b)+ P

t
C(x|b) = p(b | (c′|c))+.

Similarly, if c′ is not preferred to c by α then construct B(b)−.

• Updating trust from preferences

[9] describes the application of maximum entropy inference to enable α to
estimate P t(Accept(β, α, δ)) the probability that β will accept deal δ from
α in response to α transmitting the illocution Offer(α, β, δ). This distribu-
tion is derived from previously observed Offer(β, α, . . . ) and Reject(β, α, . . . )

12Given a prior probability distribution q = (qi)
n
i=1 and a set of constraints, the principle

of minimum relative entropy chooses the posterior probability distribution p = (pi)
n
i=1 that

has the least relative entropy with respect to q, arg minp
Pn

i=1 pi log pi
qi

, and that satisfies the

constraints. The principle of minimum relative entropy is a generalization of the principle
of maximum entropy. If the prior distribution q is uniform, the relative entropy of p with
respect to q differs from −H(p) only by a constant. So the principle of maximum entropy is
equivalent to the principle of minimum relative entropy with a uniform prior distribution.
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illocutions received from β — the former indicating readiness to accept
and the latter readiness to reject. α may not accept this historic readi-
ness as being definitive now, if so then P t(Accept(β, α, δ)) is estimated
by attaching time-discounted beliefs (as sentence probabilities) to these
observations, and then by calculating the maximum entropy distribution
subject to those probabilities as constraints.

Suppose that α now receives preference information from β in the form of
an Inform(β, α, [info]) illocution, and is prepared to accept this informa-
tion into its belief set B as a belief with sentence probability pinfo — this
probability may decay in time. How will this new information influence α’s
estimate of P t(Accept(β, α, δ))? Preference information induces a partial
ordering on the set of deals. If deal δ1 is preferred by β to deal δ2 then: if
Accept(β, α, δ2) α may conclude to certainty pinfo that Accept(β, α, δ1).

In general, “I prefer deals with property Q1 to those with property Q2”
becomes the following constraint on the P t(Accept(β, α, δ)) distribution:

pinfo =

∑
δ:Q1(δ)

pδ( ∑
δ:Q1(δ)

pδ
)

+
( ∑

δ:Q2(δ)
pδ

)
the posterior distribution for P t(Accept(β, α, δ)) is calculated by applying
the principle of minimum relative entropy12 to it subject to this constraint.

The method of representing preference information above is quite general.
Although if it is used to represent a preference ordering on an issue such
as “β prefers to pay less money to more” it generates a set of constraints.
If however such a constraint is assumed with pinfo = 1 — ie: if it is
represented in the knowledge base K — then the following device is very
economical. [9] describes the representation of P t(Accept(β, α, δ)) where
β is attempting to purchase something for money but with a period of
warranty. There α assumes that β prefers “less money to more” and
“more warranty to less”. These two preference orderings are dealt with
neatly by estimating instead P t(LimAccept(β, α, δ)) meaning “δ is the
greatest w.r.t. money and least w.r.t warranty that β will accept from α”.

In this way, quantitative preferences over finite domains will give a finite
set of linear constraints (in particular, the device above may be used to
great effect when pinfo = 1), and qualitative preferences including condi-
tional preferences also yield a finite set of linear constraints.

• Updating trust from social information

Social relationships between agents, and social roles or positions held by
agents, introduce a bias, i.e. a constraint, on the admissible probability
distributions. A social model can be then a set of constraints introduced
in K that has to be respected by the inference mechanism.

For instance, with respect to power, and assuming we model power as
a function from agents to real values, we could model a meek agent by
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adding the following constraint in K that establishes different degrees of
acceptability for proposals according to the power of the proposer:

Power(β) > Power(γ) →
P t(Accept(α, β, ϕ)) > P t(Accept(α, γ, ϕ))

A similar case can be made for reputation, which refers to the institutional
endorsement of observed trustworthiness13. Power and reputation are dif-
ferent instruments that help an agent to form an a priori assessment of
the trustworthiness of an unknown opponent, or to modify the assessment
of a known one. If α learns that her good friend γ has a high opinion
of β then this may cause α to increase her trust in β and to ‘tighten up’
the distribution P t(b′, b). Likewise, if α learns that β has a high reputa-
tion in a respected institution. So it is natural to represent reputation as
Reputation(Φ, β) where Φ is an institution name.

If α receives information, Θ, such as Reputation(Φ, β) then Θ will ei-
ther be a positive influence on α’s estimate of P t(b′, b) [written Θ+], a
negative one [Θ−], or neutral — ie a positive influence on P t(b, b) [writ-
ten Θ0]. If α receives Θ+ then her estimate of the probability that the
execution of contract b will be preferred to b becomes: p(b | Θ+)+ =
p(b)++g3(b,Θ+)(1−p(b)+), where p(b)+ is the prior probability, g3(b,Θ+)
represents the strength of α’s belief that the probability that execution
of contract b at time t + 1 will be preferred to b should increase given
Θ+ was received at time t. α revises this estimate using the princi-
ple of minimum relative entropy (Eqn. 14 ) subject to the constraint C:∑
x∈B(b)+ P

t
C(x|b) = p(b | Θ+)+, where B(b)+ is as in Sec. 5.2.1. Similarly,

if α receives Θ− or Θ0.

5.2.2 Trust as expected acceptability

The notion of trust was expressed in terms of our expected behaviour in an
opponent that was defined for each contract specification b. That notion re-
quires that an ideal distribution, PtI(b′|b, e), has to be specified for each b. The
specification of ideal distributions may be avoided by considering “expected
acceptability” instead of “expected behaviour”. The idea is that we trust β
if the acceptability of his contract executions are at or marginally above the
acceptability of the contract specification, Pt(IAcc(α, β, ν, (a, b))). Defining a
function:

f(x) =


0 if x < Pt(IAcc(α, β, ν, (a, b)))
1 if Pt(IAcc(α, β, ν, (a, b))) < x < Pt(IAcc(α, β, ν, (a, b))) + ε

0 otherwise

13Electronic Institutions [4] warrant, within specific limits, the bona fides of the players
therein — it is in their interests to report anecdotal evidence of ‘good’ behaviour beyond
those limits.
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(or perhaps a similar function with smoother shape) for some small ε, then
define:

T (α, β, b) =
∑
b′∈B

f(Pt(IAcc(α, β, ν, (a, b′)))) · Ptβ(b′|b)

T (α, β,Φ) =

∑
{b∈B|Φ(b)} Pt(b) ·

∑
b′∈B f(Pt(IAcc(α, β, ν, (a, b′)))) · Ptβ(b′|b)∑

{b∈B|Φ(b)} Pt(b)

T (α, β) =
∑
b∈B

Pt(b) ·
∑
b′∈B

f(Pt(IAcc(α, β, ν, (a, b′)))) · Ptβ(b′|b)

5.2.3 Trust as certainty in contract execution

Trust is consistency in expected acceptable contract executions, or “the lack
of expected uncertainty in those possible executions that are better than the
contract specification”. The idea here is that α will trust β more if variations,
b′, from expectation, b, are not random. The Trust that an agent α has on agent
β with respect to the fulfilment of a contract (a, b) is:

T (α, β, b) = 1 +
1
B∗ ·

∑
b′∈B

Pt+(b′|b) log Pt+(b′|b)

where Pt+(b′|b) is the normalisation of Ptβ(b′|b) for those values of b′ for which
Pt(IAcc(α, β, ν, (a, b′))) > Pt(IAcc(α, β, ν, (a, b))) and zero otherwise, B(b)+ is
the set of contract executions that α prefers to b,

B∗ =

{
1 if |B(b)+| = 1
log |B(b)+| otherwise

and β has agreed to execute b, and α systematically observes b′. Given some b′

that α does not prefer to b, the trust value will be 0. Trust will tend to 0 when
the dispersion of observations is maximal.

As above we aggregate this measure for those deals of a particular type, that
is, those that satisfy Φ(·):

T (α, β,Φ) = 1 +

∑
{b∈B|Φ(b)}

[
Pt(b) ·

∑
b′∈B Pt+(b′|b) log Pt+(b′|b)

]
B∗ ·

∑
{b∈B|Φ(b)} Pt(b)

= 1 +

∑
{b∈B|Φ(b)}

∑
b′∈B

[
Pt+(b′, b) log Pt+(b′|b)

]
B∗ ·

∑
{b∈B|Φ(b)} Pt(b)

where Ptβ(b′, b) is the joint probability distribution. And, as a general measure
of α’s trust on β we naturally use the normalised negative conditional entropy
of executed contracts given signed contracts:

T (α, β) = 1 +
∑
b∈B

[
Pt(b) ·

∑
b′∈B Pt+(b′|b) log Pt+(b′|b)

]
B∗

= 1 +
∑
b∈B

∑
b′∈B

[
Pt+(b′, b) log Pt+(b′|b)

]
B∗
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5.3 Bargaining– An application of trust

Here a simplistic view of bargaining is assumed, without considering the inter-
nals of opponents(avoiding speculation and counter speculation), focusing only
on what is known for certain — that is: what information is contained in the
signals received and when did those signals arrive. The communication language
that a bargaining agent can use in this scenario is restricted to the illocutions :
Offer(·), Accept(·), Reject(·) and Withdraw(·). The actions a bargaining agent
performs is as follows:

A simple bargaining agent can only do the following:

• select a bargaining partner;

• make an offer;

• accept an offer;

• withdraw from the negotiation.

Each of these is elaborated in the following.

• Select a bargaining partner Selecting a bargaining partner can be
done with the help of trust measures that the bargaining agent α has
from interactions done so far. α can use some ranking criteria to rank
the opponents and select partners for negotiation. This need not be too
rigorous as a finer trust measure will be used later to determine whether an
offer can be accepted or whether an offer need to be made. Other obvious
criteria will be the current need and the knowledge of the opponents as to
who among the opponents possess the capability to satisfy the need.

• Making an offer Here we discuss the strategies for making an offer with
and without a breakdown. This is based on the the principal of equitable
information revelation.

Making offers without breakdown: An agent’s strategy s is a function
of the information Yt that it has at time t. Four simple strategies make
offers only on the basis of Pt(IAcc(α, β, ν, δ)), α’s acceptability threshold
γ, and Pt(UAcc(β, α, δ)). The greedy strategy s+ chooses:

arg max
δ
{Pt(IAcc(α, β, ν, δ)) | Pt(UAcc(β, α, δ)) � 0},

it is appropriate when α believes Ω is desperate to trade. The expected-
acceptability-to-α-optimizing strategy s∗ chooses:

arg max
δ
{Pt(UAcc(β, α, δ))× Pt(IAcc(α, β, ν, δ)) | Pt(IAcc(α, β, ν, δ)) ≥ γ}

when α is confident and not desperate to trade. The strategy s− chooses:

arg max
δ
{Pt(UAcc(β, α, δ)) | Pt(IAcc(α, β, ν, δ)) ≥ γ}
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it optimizes the likelihood of trade — when α is keen to trade without
compromising its own standards of acceptability.

Making offers with breakdown: A negotiation may break down be-
cause one agent is not prepared to continue for some reason. pB =
1− P(UWithdraw(β, α, 1)|e) is the probability that β will quit in the ne-
gotiation in the next round. There are three ways in which α models
the risk of breakdown. First, pB is a constant determined exogenously
to the negotiation, in which case at any stage in a continuing negotiation
the expected number of rounds until breakdown occurs is 1

pB
. Second,

pB is a monotonic increasing function of time — this attempts to model
an impatient opponent. Third, pB is a monotonic increasing function of
(1 − Pt(UAcc(β, α, δ))) — this attempts to model an opponent who will
react to unattractive offers.

At any stage in a negotiation α may be prepared to gamble on the expec-
tation that β will remain in the game for the next n rounds. This would
occur if there is a constant probability of breakdown pB = 1

n . Let Yt
denote α’s the information at time t. s is α’s strategy, with plan bs that
determines α’s action on the basis of α’s world model W t

s as illustrated in
Fig. 11. If α offered to trade with β at s(Yt1) then β may accept this offer,
but may have also been prepared to settle for terms more favourable than
this to α. If α offered to trade at s(Yt1 ∪ {UAcc(β, α, s(Yt1))}) then β will
either accept this offer or reject it. In the former case trade occurs at more
favourable terms than s(Yt1), and in the latter case a useful belief has been
acquired: B(UAcc(β, α, s(Yt1))) = 0, and is added to Yt1 before calculat-
ing the next offer. This process can be applied twice to generate the offer
s(Yt1∪{UAcc(β, α, s(Yt1∪{UAcc(β, α, s(Yt1))}))}), or any number of times,
optimistically working backwards on the assumption that β will remain in
the game for n rounds. The strategy s(n), where s(1) = s∗ the expected-
acceptability-to-α-optimising strategy s(n) is the strategy of working back
from s(1) (n − 1) times. At each stage s(n) will benefit also from the in-
formation in the intervening counter offers presented by β. The strategy
s(n) is reasonable for a risk-taking, expected-acceptability-optimising α.

• Accepting an offer To accept an offer δ = (a, b), an agent that is in
no particular hurry to close a deal may be reluctant to accept a proposal
unless he believes that his opponent may breakdown the negotiation and
withdraw. So we first estimate α’s belief in the proposition that β will
remain in the negotiation for the next n rounds at least.

β may withdraw if:

– he believes that he can get better deal elsewhere

– he believes that the negotiation is not converging — α can address
this by making more attractive proposals.

– he believes that α is not acting fairly — one factor here is the equi-
table revelation of information.
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To decide whether α should accept an offer, α blends three separate esti-
mations: first, a subjective evaluation (the strength of belief that α has in
the proposition that the expected outcome of accepting the proposal will
satisfy some of her needs), second, an objective evaluation (the strength
of belief that α has in the proposition that the proposal is a “fair deal” in
the open market, and third an estimate of whether α will be able to meet
her commitment a at contract execution time.

Before making this decision α may also prefer to pause and look for addi-
tional information that may reduce this uncertainty — from an information-
based agent’s point of view, negotiation is firstly an information integrity
management problem. To illustrate α’s problem at this stage, suppose
that she wishes to purchase an air ticket from Barcelona to Sydney. The
respected Catalan carrier, Sierra Air, offers the ticket for e1,000, and a
new budget Australian carrier, DebJet, for e500. The objective market
evaluation, Fair(·), is determined by the amount that Barcelona to Sydney
tickets have actually been sold for. The subjective evaluation of expected
outcome, Satisfy(·), represents what α’s expected evaluation of what each
β will actually deliver — this could include delayed flights or the airline
ceasing to exist by the departure date.

• Withdrawing from the negotiation To decide when to withdraw from
a negotiation, α considers the following cases. α may withdraw if:

– he believes that he can get better deal elsewhere– this might happen
in situations where α has not explored enough with the bargaining
partners. It may also happen in case where α has a better trust
measure for another bargaining partner.

– he believes that the negotiation is not converging

– he believes that β is not acting fairly

6 Discussion

We have discussed the three models ReGreT, CREDIT and information based
model of trust. The focus of each of these models is different, making a possible
combination a powerful one. For instance, the information based model is the
most sophisticated model of trust and most suited for open systems. Where as
the ReGreT model has a very extensive reputation model, based on social net-
work analysis(SNA). And the CREDIT model focuses on the normative nature
of the environment, the institution where the interaction is enacted, the social
background of agents and the groups they belong to.

OpenKnowledge requires these three aspects of trust, as it assumes an open
system, heterogeneity of agents, a normative environment, and a social network.
Thus if we can augment the information based trust model with the reputation
model of ReGreT, the normative model of CREDIT then we have good model
of trust for the open communities like OpenKnowledge that we are exploring
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here. The future work involves in combining these models and incorporating
this in the setting of OpenKnowlewdge.
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