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1 Introduction

This deliverable outlines the process through which a peer, or a peer’s user, may determine
whether a potential interaction is good enough to justify attempting to execute it. This
judgement involves both discovering an appropriate interaction model and, which is more
difficult, determining whether other peers who may be involved in that interaction are
likely to perform their roles to a level which is judged good enough. Peers who are judged
unlikely to reach this standard will be rejected as potential interaction partners.

In determining whether peers will be likely to perform acceptable, there are two main
factors to consider:

• How well the peer claims to be able to perform this role and what restric-
tions it places on the role. These factors can be determined by the matching
process: any peer performing a role will match its abilities to the constraints of
that role to produce a numerical score that determines how close this match is and
qualitative matchings that describe the areas where this matching is only approxi-
mate. Ideally, the peer will only commit to actions that are within its own abilities
(though malicious peers may commit to actions outside the scope of their abilities,
making trust measures crucial); therefore, its commitments are not to the actions
described in the role but to its mappings of these to its own abilities. The matching
score is a summarisation of how close a peer’s abilities are to those required of the
role.

This process is internal to the peer and the results cannot be externally verified by
other peers, who will not have full access to that peer’s knowledge base, so it is
possible for mistakes and deception to occur.

• How well trusted that peer is. Measuring trust is complex because it is usually
context-dependent. A peer that has performed well for a particular role in the
past will be trusted more to perform the same role again, or a similar role, than
it will to perform a completely different role. Additionally, since, in a large peer-
to-peer system, peers will often wish to interact with other peers with whom they
have no interaction history, it is useful for peers to have means other than personal
experience for assessing trust. This could be through the sharing of experiences and
opinions about peers’ abilities by peers on the network.

The format of this document is as follows. Section 2 explains in detail the trust mea-
sures that are used and the different aspects that need to be taken into consideration when
determining trust values. Section 3 discusses the integration of the trust and matching
measurements to enable peers to determine whether other peers are likely to be good
enough at performing their intended roles. Note that we do not explain the details of
our matching process in this deliverable, as these have already been discussed in detail in
Deliverable 4.4. Section 4 outlines a simple interaction lifecycle to explain how the issues
described in Sections 2 and 3 are pertinent within the OpenKnowledge context and to
highlight where ‘good enough’ choices need to be made and where matching and trust
measurements are necessary and how they are used. Section 5 summarises the document
and discusses how we intend to follow on from this work to present a complete solution
to good enough answers in OpenKnowledge.
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2 Trust Model

2.1 Preliminaries

Our basic tenet on trust is that it may be defined as a cognitive state that a person α
holds with respect to the expected behaviour of another person β on some matter ϕ.
We assume that each peer has a fixed1 local ontology O and the ϕ is a correct term
from the set of terms built on top of O, denoted as Term(O).2 This view is based
on a relation between commitment, what β promises to do, and observation, what α
actually observes happening. In probabilistic terms this could be naturally modelled as
a conditional probability: P (Observe(α, β, ϕ)|Commit(β, α, ϕ)), that is, the probability
of α observing ϕ given that β made a commitment to α to perform ϕ. In P2P systems,
persons become peers and in multiagent systems persons become agents. In general, the
holders and subjects of trust are programs.

This section is about how to estimate P (Observe(α, ϕ)|Commit(β, α, ϕ)). We consider
that the observation of ϕ is a direct consequence of the capability of agent β to perform
ϕ and the willingness of agent β to do so. That is, P (Observe(α, ϕ)|Commit(β, α, ϕ))
becomes P (Can(β, ϕ) and Does(β, ϕ)|Commit(β, α, ϕ)) which is equal to
P (Can(β, ϕ)|Commit(β, α, ϕ)) ·P (Does(β, ϕ)|Commit(β, α, ϕ)) and because capabilities
are not related to commitments we have

P (Observe(α, ϕ)|Commit(β, α, ϕ)) =

P (Can(β, ϕ)) · P (Does(β, ϕ)|Commit(β, α, ϕ))
(1)

We will estimate P (Does(β, ϕ)|Commit(β, α, ϕ)) based on past observed behaviour
in similar circumstances (similar commitments) and P (Can(β, ϕ)) as a matching de-
gree between the capabilities needed now and the capabilities observed in the past.
Then, trust will become an entropy measure of the resulting probability distribution
P (Observe(α, ϕ)|Commit(β, α, ϕ)). We will simplify notation in the rest of the paper
and will refer to the previous probability distributions as P (ϕ | ϕ).

Interaction models Interaction models can be atomic, that is, they code a particular
behaviour protocol, or can be combinations of atomic ones to represent more complex
activities, usually distributed along time. Thus, we assume that IMs can be combined
following a simple grammar3:

IM ::= im | IM · IM | IM || IM | IM∗

im ::= see LCC manuals for details

1ontologies certainly evolve; however the process by which an ontology evolves is out of the scope of
this paper. We assume though that it does not change within a particular interaction.

2in LCC interaction models the content of a message can be a Cartesian product of terms instead of
a single term. All the ideas in this paper can be naturally extended to this particular case.

3this grammar is a simplification of the expressive possibilities of performative structures in electronic
institutions [1], where also the flow of agents and roles is specified.
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where the · represents sequence, || is the concurrent execution of two IMs and ∗ iteration.
We will note in capital letters: IM , when an interaction model can be atomic or a
combination of atomic ones, and by low case letters: im, when it is an atomic interaction
model.

Local ontologies We assume each peer has a local ontology O that consists of some
basic (and finite) data types T with two relationships: refinement and combination. A
refinement relationship (named usually as is-a) : ⊆ T × T defines increased specificity
(e.g. a relation between values and types). The combination relationship (named usually
as part-of ) ⊂ ⊆ T × T defines the components of an entity. We represent this relation
as a term where the predicate is the composed entity and the arguments the parts of it
(e.g. car(wheels, engine) means wheels ⊂ car and engine ⊂ car). We can naturally extend
these relationships to tuples of values and also to terms built from a function symbol and
a set of arguments:

• If t′i : ti then t1 × ...× t′i × ...× tn : t1 × ...× ti × ...× tn

• If p1 ⊂ f, ..., pn ⊂ f and g : f then g(p1, ..., pn) : f(p1, ..., pn), also if (p′i, ..., p
′
n) :

(pi, ..., pn) then f(p′i, ..., p
′
n) : f(pi, ..., pn)).

We denote the free algebra of terms generated from O with these two realtions as
Term(O). Note that if predicates are not recursive then the free algebra is finite. We
assume finiteness in the trust computation later on.

The : relationship over the set of terms defines a tree relationship (in fact, a forest
with different roots that are not comparable to each other). The more specific the term,
the lower in the tree. That is, if t : v then t is a descendant of v. The levels of the free
algebra define the parent/child relationship. In other words, if t : v and there is no w such
that t : w and w : v then v is the father of t. This tree, or trees, can be generated on the
fly and locally to a particular term, that is all ancestors, siblings and descendants around
the term and for a certain distance of the term so as to focus on a particular region of
the terminology. This is specially important to obtain trust values in an efficient way.

Commitments In the context of OpenKnowledge, the behaviour of agents is somehow
constrained to the execution of interaction models (IM). Any commitments that an agent
might create (e.g. I’ll deliver ten bottles of wine tomorrow) are direct consequences of
the execution of interaction models. In fact they are constraints on the future behaviour
of the peer in the execution of an IM. Commitments come in two forms:

• Norms, representing restrictions on the peer’s behaviour due to the simple fact that
a peer accepts to play a role in an interaction model. That is, the agent commits
to speak when it is time to speak, use the right messages, and in general to follow
the script of the IM and to satisfy its constraints in the precise manner defined by
the IM.

• Agreements, as direct consequences of the choices that an agent makes when playing
an interaction model and that will affect its future behaviour. For instance, we
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expect that when executing the IM for the delivery of the bottles —after having
bought 10 Château Rotschild, the variable in the message corresponding to the
number of bottles gets instantiated to 10. Since we allow approximate matching,
it may be that the peer cannot satisfy the constraints as defined in the IM but
instead will match the constraints to its own abilities. A set cm is built up for every
message in an IM that details the constraints the peer will satisfy before passing
the message and in order to instantiate the variables in the message. In the case of
perfect matching, cm will be equivalent to the set of constraints on the message as
described in the IM. However, in the case of approximate matching, at least one of
these constraints will differ. It is made clear in cm exactly which original constraints
altered constraints are mapped to.

We represent both types of commitments (Norms and agreements) as

Commit(β, α, 〈im, r,m, ϕ, cm〉, t)

where β commits to α (another peer) to play role r in (atomic) interaction model im
and, as part of playing that role, to send a particular message m instantiated as ϕ. ϕ
is determined through the matching of constraints detailed in cm, the commitment being
made at time t. That means that α expects β to later on execute im playing role r and
that β will instantiate message m as ϕ, that is ϕ : m in a manner determined by the set
of constraints cm. If cm is not identical to the constraints on m in im, the expectations
of instantiations of the variables may differ. The trust that α will build on β will be
determined by how β keeps its commitments.

Given any message, we want to be able to automatically determine whether that
message was passed correctly during the running of an im. We can be sure that the
format of the message is correct: passing messages that are structurally incorrect with
respect to the im is impossible in the system. It therefore needs to be determined whether
the variables in the message have been instantiated correctly. The original constraints
in the im describe how the variables of m were expected to be instantiated through
giving type information. ϕ, which is derived from cm, describes how the peer is intended
to satisfy them which, in the case of approximate matching, will not be the same. For
example, a message in immay be ask(C,Ma,Mo) and these variables may be instantiated
through the satisfaction of the constraint need(C : car,Ma : make,Mo : model) on
that message. In the case of perfect matching, the receiving peer would expect C to
be some kind of car, Ma to correspond to make and Mo to model, as detailed in the
constraint and therefore we have ϕ = ask(C : car,Ma : make,Mo : model). However, if
cm = {need(C : vehicle,Ma : make,Mo : ⊥)} then the peer who created cm will generate
ϕ = ask(C : vehicle,Ma : make,Mo : ⊥). Note that ϕ contains type information where
m does not because this type information has been derived from the constraints.

Given any constraint over a message, it can be automatically estimated whether the
constraint was satisfied during the running of an im. That is, we assume the existence of
a function g : MSG×OBS 7→ {>,⊥} that reports for each execution of an im, whether
a certain ϕ has been satisfied when generating a message m ∈ MSG according to an
observation ϕ′ ∈ OBS by returning > or if it was violated or the im never finished by
returning ⊥.
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After a commitment is made by agent β, agent α can then observe the execution of
the commitment and giving a value in a certain evaluation space D. For instance, a
numerical scale [0, 1] could be used for automatic determination of constraint violation,
determined by g, and a qualitative set {bad, neutral, good, very good} could be used for
user feedback. However, in general this user feedback would not be for a specific message
but rather for the interaction as a whole. This interaction-specific feedback would then
be propagated to the messages, so that the performance of any message is assumed to be
of the same value as the performance of the whole im.

The execution of an im will possibly generate new commitments for future behaviour
in ulterior ims. For example, we agree on the product to buy and the price and at the
same time commit on some conditions for the ulterior negotiation of the payment method:
I’ll not charge any bank commissions if you decide to pay by credit card. In this way
we can naturally think of an im played by an agent as an ‘operation’ that consumes
commitment(s)4 and generates commitments. That leads to our basic representation unit
hold by any agent α about the behaviour of other agents, which is:

µ =〈β, IM,

{〈Commit(β, α, 〈im, r,m, ϕ, cm〉, t), ϕ′, g(ϕ, ϕ′), d〉}im∈atom(IM),m∈msg(im), C〉

where β engages in the execution of im and C is the set of new commitments generated
during the execution of im affecting α. Each element of the set records the performance
of β for a particular message m for which there was a constraint ϕ : m with constraint
commitments cm, and for which α had observation ϕ′, evaluated performance by d ∈ D
and noted termination/satisfaction by g(ϕ, ϕ′).

We denote the set of all existing µs as M . In the rest of the document we will often
view any of the recorded experiences from the perspective of a single message commitment
and will abuse notation writing µ = (ϕ′, ϕ). We will note the data base of experiences of
α as Mα

Reputation Gossipping can then be naturally seen as the transmission of items from
the data base of aggregations of values from the data base. So we can have:

Gossip(α, γ, 〈β, negotiation,
{〈Commit(β, α, 〈negotiation, seller, send(product), send(wine),
product(wine)〉, 3/12/07), send(water),⊥, V ery good〉}, {}〉)

or summaries

Gossip(α, γ, 〈β, negotiation, seller, V ery good〉)
4there might be more than one commitment affecting different messages of a particular im.
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2.2 Semantic Similarity

Similarity measures Interactions between agents might be sparse in a large P2P soci-
ety, so we exploit an imperfect reasoning method to maximise the information extracted
from any interaction. The idea is that concrete experiences about commitments over
〈IM, r,m, ϕ, cm〉 can be used to update the expectation of behaviour over semantically
close commitments. The method is based on similarity measures along three dimensions.

• Similarity on vocabulary. The concepts within an agent’s ontology are closer, se-
mantically speaking, depending on how far away are they in the structure defined
by the ‘:’ relation. How commitments, Commit(·) about objects in a particular se-
mantic region, and their execution Observe(·), affect our decision making process
about accepting new commitments on nearby semantic regions is crucial to scale the
model. The measure we use [2] bases the semantic similarity between two concepts
on the path length induced by ‘:’ (more distance in the ‘:’ tree means less seman-
tic similarity), and the depth of the subsumed concept (common ancestor) in the
shortest path between the two concepts (the deeper in the hierarchy, the closer the
meaning of the concepts). For agent α semantic similarity could then be defined as:

Simτ (ϕ, ϕ
′) =

{
1 if ϕ = ϕ′

e−κ1l · eκ2h−e−κ2h

eκ2h+e−κ2h otherwise
(2)

where l is the length (i.e. number of hops) of the shortest path between the con-
cepts5, h is the depth of the deepest concept subsuming both concepts, and κ1 and
κ2 are parameters balancing the contribution of shortest path length and depth
respectively.6

• Similarity on roles. Roles are described in OpenKnowledge as either (i) a number
of keywords, or (ii) as a set of terms in the local ontology of the designer of the im.
We will use the matching technology developed elsewhere in the project [2] or the
method described above in the case of terms.

– Keywords:

Simr(r, r
′) = matching(Keywords(r), Keywords(r′)) (3)

– Terms:

Simr(r, r
′) =

1

2
·(

∑
ϕ∈terms(r)

max{Simτ (ϕ
′, ϕ) | ϕ′ ∈ terms(r′)}
| terms(r) |

+

∑
ϕ∈terms(r′)

max{Simτ (ϕ
′, ϕ) | ϕ′ ∈ terms(r)}
| terms(r′) |

)

(4)

5these hops have to take into account the type of the link, a link representing a part-of implies a
higher semantic distance when traversing it than a link labelled with is-a.

6[2] argues that κ1 ' 0.2 and κ2 ' 0.6 represent a good model of human intuitions about similarity.
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• Similarity on interaction models. As in the case of roles, interaction models are
described with a list of keywords or with a list of terms.

– Keywords:

Simim(im, im′) = matching(Keywords(im), Keywords(im′)) (5)

– Terms:

Simim(im, im′) =
1

2
·(

∑
ϕ∈terms(im)

max{Simτ (ϕ
′, ϕ) | ϕ′ ∈ terms(im′)}
| terms(im) |

+

∑
ϕ∈terms(im′)

max{Simτ (ϕ
′, ϕ) | ϕ′ ∈ terms(im)}
| terms(im′) |

)

(6)

Message semantics The semantics of messages is determined in LCC as the relation-
ship between the content of a message and the constraints that the agent has to satisfy
and that guard the sending of the message. By looking into the LCC code of an atomic
interaction model im we can obtain the set of constraints that have to be satisfied in
order for m to be sent. However, in cases where the peer has indicated through mapping
that it will be performing not the precise constraints detailed in the im but a mapping of
these constraints to its own abilities, the semantics of the message is then determined by
these mappings. In order to simplify the amount of search that is necessary to determine
what abilities a peer claimed to have, we therefore extend cm to include all constraints
that the peer is promising to satisfy, whether these are perfect mappings or not. This
therefore removes the necessity to look inside both ϕ and the im to calculate those cm a
peer agreed to fulfil.

Matching Experience will tell us in which different contexts (i.e. ims) the peer has been
capable of uttering particular message contents given their concrete relation (through an
im) with certain constraints. It is therefore the history of interactions that tells us what
‘semantics’ the peer under scrutiny can understand. We can define the constraints we
know agent β can deal with as:

Hβ = {cm | 〈β, IM, {. . . Commit(β, , 〈im, r,m, ϕ, cm〉, ϕ′, , d) . . . }, 〉 ∈Mβ}, value(d) ≥ ζ}
(7)

Thus, given a Commit(β, α, 〈im, r,m, ϕ, cm〉) α needs to assess whether β is capable
of doing ϕ, that is to estimate P (Can(β, 〈im, r,m, ϕ, cm〉)). The way we propose is to
look in the history of satisfactory (over a threhsold ζ) experiences for all constraints that
were ever used/satisfied by the peer. Then, compute the current needs, i.e. the current
constraints to be satisfied, and assess whether we believe the peer can satisfy them by
looking for the past constraint maximally similar to each of the current ones.

P (Can(β, 〈im, r,m, ϕ, cm〉)) =
∏
c∈cm

max{Simτ (c
′, c) | c′ ∈ Hβ} (8)
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Overall similarity Thus, given all these previous considerations it is easy to define
the similarity between the content of commitments as an aggregation (we model it as a
weighted combination depending on parameters γim, γr, γϕ, and γm and γcm) of several
similarity measures:

Sim(〈im, r,m, ϕ, cm〉, 〈im′, r′,m′, ϕ′, c′m〉) =

Simim(im, im′)γim · Simr(r, r
′)γr · Simτ (ϕ, ϕ

′)γϕ · Simτ (m,m
′)γm · Simc(cm, c

′
m)γcm

(9)

where the last factor, that is, similarity between sets of constraints, is defined as:

Simc(cm, c
′
m) =

(∏
c∈cm

max
c′inc′m

Simτ (c, c
′)

)
·

∏
c∈c′m

max
c′incm

Simτ (c, c
′)

 (10)

NOTE: In the text of the algorithm we will simplify notation and will represent
Sim(〈IM, r,m, ϕ, cm〉, 〈IM ′, r′,m′, ϕ′, cm〉) by Sim(ϕ, ϕ′).

2.3 Decay

The integrity of percepts decreases in time. α may have background knowledge concerning
the expected integrity of a percept as t → ∞. Such background knowledge will be
expressed in terms of α’s own knowledge, and is represented as a decay limit distribution.
If the background knowledge is incomplete then one possibility is for α to assume that
the decay limit distribution has maximum entropy whilst being consistent with the data.
Given a distribution, P(Xi), and a decay limit distribution D(Xi), P(Xi) decays by:

Pt+1(Xi) = ∆i(D(Xi),Pt(Xi)) (11)

where ∆i is the decay function for the Xi satisfying the property that limt→∞ Pt(Xi) =
D(Xi). For example, ∆i could be linear: Pt+1(Xi) = (1− νi)×D(Xi)+ νi×Pt(Xi), where
νi < 1 is the decay rate for the i’th distribution. The decay function or the decay limit
distribution could also be a function of time: ∆t

i and Dt(Xi).

2.4 Update

Remember that:

P(ϕi|ϕ) = P (Can(ϕi)) · P (Does(ϕi)|Commit(ϕ))

and that we assessed P (Can(ϕi)) in the previous section.
In the absence of in-coming messages the integrity of P (ϕ|ϕ) decays by Eqn. 11. The

following procedure updates P (ϕ|ϕ). Here we explain how to update P (Does(ϕi)|Commit(ϕ)),
noted as P (ϕ|ϕ) for simplicity.

Suppose that α has an experience µ = (φ′, φ) of perceiving the execution φ′ of a
commitment φ and values it with d, then α must attach an epistemic belief Rt(α, β, µ) to
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P (ϕ|ϕ) — this probability reflects α’s level of personal caution with what this experience
means for the future. Thus the default definition:

Rt(α, β, (φ′, φ)) = P (φ′|φ) + (1− P (φ′|φ)) · P (φ′|φ)

Denote the prior distribution P t(ϕ|ϕ) by ~p, and let ~p(µ) be the distribution with
minimum relative entropy7 with respect to ~p: ~p(µ) = arg min~r

∑
j rj log

rj
pj

that satisfies

the following constraints:

∀ϕ : sim(ϕ, φ) ≥ ω

P (Does(ϕi)|Commit(ϕ)) = P t(ϕ′|ϕ) + 1/nex · S · (1− P t(ϕ′|ϕ))
(12)

where S(φ′, φ, ϕ) = (1− | Sim(φ′, φ)− Sim(ϕi, ϕ) |) · Sim(ϕ, φ), and Sim(θ, ψ)
= Sim(〈IMθ, rθ,mθ, θ, cm〉, 〈IMψ, rψ,mψ, ψ, cm〉).

Where nex represents the minimum consequent good experiences to have a high con-
fidence on the willingness of the oponent. Finally, using Eqn. 11 we obtain the method
for updating the distribution Pt+1(ϕ|ϕ) after the observation µ = (φ′, φ):

Pt+1(ϕ|ϕ) = ∆i(D(Xi), ~p(µ)) (13)

2.5 Reputation

We propose two ways of modelling reputation. The first one based on sharing personal
experiences among the peers to improve the trust computation and the second on a rating
mechanism that can be used as an alternative to the trust measure altogether.

Gossip Basically gossip generates new constraints into the probability distributions. A
peer in the network passes information about a previous experience, that is, a particular
µ. The main problem in this approach is the reliability of the source. Thus, the question
is: given a piece of information µ = (φ′, φ) with its associated value d passed by a peer
in the network, what is the value of Rt(α, β, µ)? Once this is assessed then the method
would be as before.

The assessment can be based on social network analysis as exploited in the REGRET
system [5]. We don’t explore this in detail here.

RepuRank Peers can rate each other’s activities (that is, in our context, satisfaction
of the commitments in an im) together with the certainty of their ratings. For example,
a peer receiving a MP3 file transformed into MIDI may not be satisfied with the result

7Given a probability distribution ~q, the minimum relative entropy distribution ~p = (p1, . . . , pI) subject
to a set of J linear constraints ~g = {gj(~p) = ~aj ·~p−cj = 0}, j = 1, . . . , J (that must include the constraint∑

i pi− 1 = 0) is: ~p = arg min~r

∑
j rj log rj

qj
. This may be calculated by introducing Lagrange multipliers

~λ: L(~p,~λ) =
∑

j pj log pj

qj
+ ~λ · ~g. Minimising L, { ∂L

∂λj
= gj(~p) = 0}, j = 1, . . . , J is the set of given

constraints ~g, and a solution to ∂L
∂pi

= 0, i = 1, . . . , I leads eventually to ~p. Entropy-based inference is a
form of Bayesian inference that is convenient when the data is sparse [3] and encapsulates common-sense
reasoning [4].
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but is not sure whether it is the fault of the peer offering the service or whether it is due
to the low quality of the MP3 file. The ratings that peers can give is a pair of values
〈x, y〉, where the first value −1 ≤ x ≤ 1 is the indication of quality, ranging from very
bad (-1), neutral (0) to very good (1) and the second value 0 ≤ y ≤ 1 is an indication of
how certain the peer was on the provided rating, ranging from completely unsure (0) to
very sure (1). We assume peers are willing to give ratings, for example based on altruism,
revenge or their own benefit. Ratings may also be given automatically in case that a peer
is represented by a computer. For example, a peer α may give a negative ranking about
a peer β if communication is expected at a certain moment and β does not respond.

These ratings influence the authority of an agent. The better its ratings the more
authority an agent has. Also, the more authority an agent has the more influence its
opinion has on the authority of others. In this way an algorithm similar to PageRank is
obtained.

2.6 Trust equations

We define three different trust equation systems that can be implemented (we give later
an algorithm implementing the second one), or chosen, depending on the particular per-
sonality of the peer.

Ideal enactments. Consider a distribution of enactments that represent α’s “ideal”
in the sense that it is the best that α could reasonably expect to happen: PtI(ϕ′|ϕ).
Here we measure the relative entropy between this ideal distribution, PtI(ϕ′|ϕ), and the
distribution of expected enactments, Pt(ϕ′|ϕ). That is:

T (α, β, 〈im, r,m, ϕ, cm〉) = 1−
∑
ϕ′

PtI(ϕ′|ϕ) log
PtI(ϕ′|ϕ)

Pt(ϕ′|ϕ)
(14)

where the “1” is an arbitrarily chosen constant being the maximum value that this measure
may have. This equation measures one, single commitment ϕ.

Preferred enactments. The previous measure, ‘Ideal enactments’, requires that an
ideal distribution, PtI(ϕ′|ϕ, e), has to be specified for each ϕ. Here we measure the ex-
tent to which the enactment ϕ′ is preferable to the commitment ϕ. Given a predicate
Prefer(c1, c2, e) meaning that α prefers c1 to c2 in environment e. Then:

T (α, β, 〈im, r,m, ϕ, cm〉) =
∑
ϕ′

Pt(Prefer(ϕ′, ϕ))Pt(ϕ′ | ϕ)

Satisfactory enactments. Here we measure the extent to which the enactment ϕ′

given the commitment ϕ satisfies a need χ. Given a predicate Sat(ϕ′, ϕ, χ) meaning that
α gets its need χ satisfied by ϕ′ in the context of commitment ϕ, we can define:

T (α, β, 〈im, r,m, ϕ, cm〉, χ) =
∑
ϕ′

Pt(Sat(ϕ′, ϕ, χ))Pt(ϕ′ | ϕ)

this probability distribution can be assessed by taking into account the value d in the
history of interactions.
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Certainty in enactment. Here we measure the consistency in expected acceptable en-
actment of commitments, or “the lack of expected uncertainty in those possible enactments
that are better than the commitment as specified”. Let: Φ+(ϕ, κ) = {ϕ′ | Pt(Prefer(ϕ′, ϕ)) > κ}
for some constant κ, and:

T (α, β, 〈im, r,m, ϕ, cm〉) = 1 +
1

B∗ ·
∑

ϕ′∈Φ+(ϕ,κ)

Pt+(ϕ′|ϕ) log Pt+(ϕ′|ϕ)

where Pt+(ϕ′|ϕ) is the normalisation of Pt(ϕ′|ϕ) for ϕ′ ∈ Φ+(ϕ, κ),

B∗ =

{
1 if |Φ+(ϕ, κ)| = 1

log |Φ+(ϕ, κ)| otherwise

Aggregations. For an overall estimate of α’s trust on β using any of the previous mea-
sures the procedure consists on projecting from Mβ those experiences (including possibly
gossips) that are relevant to the measure to be obtained. For instance in the previous
trust measures we computed the P (ϕ | ϕ) (in fact P (Observe(α, β, ϕ)|Commit(β, α, ϕ))
—remember the notation simplification) obtaining the experiences for a particular im, r,
m and ϕ. If we want to compute other trust measures we simple focus on the appropriate
subset of experiences. For instance T (α, β, 〈im, r〉) will be computed by looking into all
experiences for im and r in the data base. Measures that take into account the impor-
tance of certain terms (or ims or rs) are also easy to define. Imagine a function that gives
the importance of terms f : Terms → [0, 1] that is normalised. We can then define an
aggregation as:

T (α, β, 〈im, r〉) = 1−
∑
ϕ

Ptβ(ϕ) · f(ϕ) · [1− T (α, β, 〈IM, r,m, ϕ, cm〉)]

where Ptβ(ϕ) is a probability distribution over the space of commitments that the next
commitment β will make to α is ϕ.

2.7 Trust algorithm

We give, as an example of the default trust algorithms provided by OpenKnowledge, the
one that uses Minimum Relative Entropy and preferences, as illustrated in Algorithm 1.
We assume equiprobable distributions for the decay limit distributions and linear decay.
The other default algorithms are similarly defined. A generic version of the algorithm,
where functions like Sim(·) or distributions like D(·) are parameters, is also straightfor-
ward.

The algorithm has parameter η that determines how much of the semantic space is
explored, by fixing it to a high value we can have more efficient implementations. By
reducing it progressively we can have a more realistic and fine grained implementation.
Also, techniques like memoizing can help in increasing the efficiency of the algorithm.
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Calendar time can be simulated by adding an empty µ to Mα for each instant of time
with no experiences.

Trust is calculated on demand following Algorithm 1 in this section. Alternative im-
plementations that pre-compute probability distributions are possible but not considered
here.

3 Integration of Matching and Trust

As can be seen from the discussion in the previous section, there is a close relationship be-
tween matching and trust because evaluation of similarities between constraints, through
matching, is crucial to the output of the trust process. In this section, we discuss the
integration between matching and trust and how we can use both of these to identify a
peer that is likely to be the best at performing a given role.

The matching process determines how well a peer’s abilities map to the constraints on a
role it wishes to play and results in a score and a set of mappings cm. Since the mappings
produced by the process define the way in which the peer will satisfy the constraints
during the interaction, this matching score gives an accurate reflection of how well that
peer believes it will be able to satisfy the constraints. However, it is important to modify
the matching score reported by a peer with some kind of trust measure because:

• The peer may have a poorly organised local ontology, and its understanding of how
closely matched its abilities and the constraints are may be flawed;

• The score returned by the matching process will accurately reflect the peer’s under-
standing of how well it can satisfy a constraint; however, the peer may decide to
cheat and report a different score during the subscription process. Since the match-
ing score depends on a private local ontology and cannot be externally verified, it
cannot be known whether the peer is being honest about its capabilities.

• As discussed previously, a peer’s willingness to perform an action may not match its
ability to do so: it may commit to perform an action that it is capable of performing
well but nevertheless perform it poorly.

Section 2.1 describes how an assessment of both the capabilities and willingness of a
peer with reference to a particular constraint (or ability) is crucial in determining the trust
score. Nevertheless, computing the capability according to Equation 8 is not enough. The
matching process is independently useful because:

• What is being measured of an im is different. The matching process measures
the capability of a peer based on the similarity between the constraints and the
abilities of a peer that may perform a role (say, peer1), judged according to peer1’s
ontology. Computing the capability aspect of the trust process measures how similar
a constraint is to a constraint that peer1 has been known to (attempt to) satisfy
previously, judged according to the ontology of a peer that may choose to interact
with peer1 (say, peer2). peer2’s judgement of similarity of constraints may not
correspond to peer1’s, since they are based on different ontologies, so although, if
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Algorithm 1 function Trust(α, β, 〈im, r,m, ϕ, cm〉)
Require: O {the peer finite local ontology}
Require: κ1, κ2 : Real [Default 1.0] {parameters of the similarity function}
Require: η : [0, 1] [Default 0.8] {min. sem. similarity in the computation}
Require: ν : [0, 1] [Default 0.95] {decay parameter}
Require: ζ : [0, 1] [Default 0.7] {minimum satisfaction}
Require: ω : [0, 1] [Default 0.1] {minimum combined similarity}
Require: nex : N [Default 6] {number of experiences to be highly confident}
Require: Prefer : Terms(O) × {ϕ} → [0, 1] [Default Prefer(x, y) = if x = y then 1 else 0] {a prob.

dist. for preference of terms over ϕ represented as a vector}
Require: Mα ⊆M {α’s log of experiences sorted by time}
Ensure: Trust(α, β, 〈IM, r, m, ϕ, cm〉) ∈ [0, 1]

Focus← ∅
for all ϕ′ in Terms(O) do

if Simτ (ϕ′, ϕ, κ1, κ2) ≥ η then
Focus← Focus ∪ {ϕ′}

end if
end for{we assume finiteness of Terms(O)}
for all ϕ′ in Focus do

D(ϕ′ | ϕ)← 1/size(Focus)
end for
Hβ = ∅
for all µ = 〈β, IM, PC, C〉 in Mα

and 〈Commit(β, , 〈im, r, m, ϕ′, c′〉, t), ϕ′′, 1, d〉 ∈ PC with d ≥ ζ do
Hβ = c′ ∪Hβ

end for
Match← 1
for all φ ∈ cm do

MAX ← 0
for all φ′ ∈ Hβ do

MAX ← max{MAX, Sim(φ, φ′)}
end for
Match←MAX ·Match

end for
t← 0; P t = D
for all µ = 〈β, im, PC, C〉 in Mα

and 〈Commit(β, , 〈im, r, m, ϕc, cm〉, t), ϕ′′, 1, d〉 ∈ PC do
if Sim(ϕc, ϕ) ≥ ω then

for all ϕ′ in Focus do
S ← (1− | Sim(ϕ′′, ϕc)− Sim(ϕ′, ϕ) |) · Sim(ϕc, ϕ)
Q(ϕ′ | ϕ)←Match · (P t(ϕ′|ϕ) + 1/nex · S · (1− P t(ϕ′|ϕ))) {Constraints to satisfy}

end for
P t+1 ← (1− ν)D + ν ·MRE(P t, Q) {MRE is the Min. relative entropy from P t satisfying Q}

end if
t← t + 1

end for
T ← 0
for all ϕ′ in Focus do

T ← T + Prefer(ϕ′, ϕ) ∗ P t−1(ϕ′ | ϕ)
end for
return T
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peer2 judges constraint c1 and constraint c2 to be very similar, it would therefore
consider peer1’s prior performance on c1 to be highly indicative of its performance on
c2, peer1 may in fact map them to different abilities and the expected performances
will not be correlated. In both situations, we are forced to make judgements based
on incomplete information, but different kinds of incomplete information in each
case. Therefore by allowing them both to be factors in our overall judgement of
suitability of peers for roles, we maximise the chances of an accurate outcome.

• From a pragmatic point of view, using both the matching score and the trust score to
choose a peer spreads the workload more evenly. Every peer must give its matching
score when subscribing to a role (along with the list of constraints it is intending to
satisfy, cm, which is derived from the matching process). Therefore, this information
comes free to any other peer potentially involved in the interaction. However, trust
scores must be calculated by every peer for every other peer they may potentially
interact with, and is thus an expensive process. By utilising this free matching
information, peers can reduce the number of trust calculations they need to perform
by only assessing peers that have a reasonably high matching score and ignoring
peers that are unlikely to be able to perform the role well.

Although this illustrates that an assessment of both matching and trust scores is
important in evaluating expected behaviour of peers, we cannot expect to use these scores
to determine precisely how a peer will behave in a given situation. However, trust and
matching scores are orthogonal, which makes it hard to define a precise semantics of the
combination of matching and trust scores. Furthermore, this relation is context dependent
and is based on the preference of the peer and its hidden decision processes.

We therefore suggest that the only way to determine how to combine these two scores
in a way which will most often lead to us identifying the best peer for a role correctly or
with reasonable reliability is through pragmatic evaluation of the behaviour of peers. The
incomplete and unreliable nature of the tasks means we cannot give a formal underpinning
of this combination but can merely say that experiment indicates that a certain method of
integration is generally the most successful. We therefore leave the question as to exactly
how this combination will be calculated to a stage when thorough empirical evaluation
of peer behaviour is possible. In the meantime, we outline various approaches which we
intend to test as soon as possible.

In any approach we take, we will want to use the matching scores provided by peers
as a filter, so as to avoid performing expensive trust calculations for more peers than
necessary.

Combining matching and trust scores: Using this approach, illustrated in Algo-
rithm 2, we first remove all peers with a matching score below a certain threshold and
then, for the remaining peers, calculate their trust scores. The best peer is the one for
which the combination of the trust and matching scores is highest, calculated according to
the equation ti.ν+mi.(1−ν), where ti is the trust score for peeri, mi is the matching score
and ν is a parameter. In the simplest case, ν = 1

2
, in which case this equation represents

taking the average of ti and mi. The optimal value of ν may either be decided by the
peer based on the context or may be determined empirically. Moreover, the suitability of
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any form of this equation will need to be determined empirically; it may be that a linear
combination of the two scores is not the best approach.

Determining intervals: Using this approach, illustrated in Algorithm 3, peers are
sorted into bands of width ψ (ψ ∈ [0...1]) according to their matching scores. Thus the
first band would contain any peer with perfect matching; the second band would contain
any peer with matching scores (1− ψ) ≤ mi < 1, and so on. Once this sorting has been
done, matching scores are ignored and further choice is made on the basis of the trust
scores alone. The best peer is the one from the highest matching band that has the best
trust score, assuming that this trust score exceeds some basic threshold ζ. If the highest
trust score for a peer from the highest matching band does not exceed this threshold,
these peers are rejected and the next matching band is inspected, until a suitable peer is
found.

We intend to implement these algorithms, and potentially further algorithms, and
evaluate their relative merits on their performance. It is possible that testing may indicate
that neither approach is optimal and point us towards an improved method of integration
of matching and trust.

Algorithm 2 Find best peer for a role r in interaction model IM by combining matching
and trust scores, as calculated by peer α

Require: P {the set of potential peers}
Require: ∀pi ∈ P.mi ∈ [0, 1] {where mi is the matching score declared by pi on subscrib-

ing to the role.}
Require: ξ : [0, 1] {the matching threshold}
Require: ν : [0, 1] {trust/matching weighting variable}
poss peers← {pi | pi ∈ P, pi.mi ≥ ξ}
highest score← 0
best peer ← nil
for all pi ∈ poss peers do
pi.ti ← trust(α, pi, 〈IM, r〉)
pi.score← pi.ti.ν · pi.mi.(1− ν)
if pi.score > highest score then
highest score← pi.score
best peer ← pi

end if
end for
return best peer

4 Lifecycle

This section illustrates where assessments of good enough performance are necessary
through tracing the lifecycle of an interaction from the point of view of a particular peer,
named peer1.
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Algorithm 3 Find best peer for a role r in interaction model IM through threshold
lowering, as calculated by peer α

Require: P {a set of peers}
Require: ∀pi ∈ P.mi ∈ [0, 1] {where mi is the matching score declared by pi on subscrib-

ing to the role.}
Require: ψ : [0, 1] {threshold lowering interval}
Require: ζ : [0, 1] {trust threshold}
poss peers← ∅
peers to inspect← P
threshold← 1
highest trust← 0
best peer ← ∅
while best peer = ∅ do
peers to inspect← P − poss peers
while poss peers = ∅ do

for all pi ∈ peers to inspect do
if mi ≥ threshold then
poss peers← poss peers ∪ pi

end if
end for
threshold← threshold− ψ
poss peers← ∅

end while
for all pi ∈ poss peers do
trust(α, pi, IM, r) = ti
if ti ≥ ζ then

if ti > highest trust then
highest trust← ti
best peer ← pi

end if
end if

end for
end while
return best peer
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• peer1’s user decides he wishes to play the role of a buyer in a buying-selling inter-
action. He therefore inputs the following query into the discovery service (DS):

Buying selling interaction

The user, if he wishes, may also annotate this with keywords that he considers ap-
propriate. For example, if he wants to buy a computer, he may add the keyword
computer. This keyword would usually be annotated with a reference to the ontol-
ogy it is from (which could be a URI or a path from the ontology) in order to give
it context; however, this is not compulsory. This keyword is not attached to any
specific variable - this would be impossible as the IM has not yet been chosen - but
is intended to give non-specific context to the interaction.

• The DS returns a list of potentially suitable IMs, ranked according to various criteria
such as:

– How well the query of the user matches the keyword description of the IM.
This analysis also includes consideration of any annotation keywords added by
the user, so, in this case, an IM described as computer−buying−selling would
match better than one labelled simply buying − selling.

– Some evaluation of how popular the IM is. The precise mechanics of this
have not yet been determined, but the RepuRank process discussed in Section
2.5 could be used to gather reputation information about IMs. Additionally,
information services could be set up that would monitor how frequently IMs
were used and possibly to record any user feedback on them.

– How many peers are already subscribed to the IM. If an IM has no peers
subscribed to other roles, it cannot be immediately executed once peer1 has
joined. Also, the more peers that are subscribed to the roles in an IM, the more
choice peer1 has about whom to interact with. However, if there are already
many peers subscribed to the role that peer1 wishes to play, then this could
be seen as a disadvantage, as peer1 is less likely to be chosen by other peers to
play its desired role.

This process returns a ranked list of IMs to peer1, with the highest ranked IMs most
likely to be suitable for peer1’s needs. Along with every IM will be details of peers
subscribed to each role in the IM, including their reported matching score and the
details of exactly what constraints these peers intend to satisfy, where this differs
from the constraints on the role they are subscribed to playing (this constraint
mapping process is described in more detail in the next step, where we discuss how
peer1 determines its constraints).

This judgement of suitability is very general, depending on keyword descriptions
and the experiences of other peers, and in order to tell more precisely how suitable
the IM is, peer1 must compare the abilities and consequences required in the role it
wishes to play (the constraints on that role) with its own abilities and goals. This
is done through the matching process. Since matching is fairly expensive, peer1 can
use the automatic ranking so that it performs matching only on highly ranked IMs.
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a(buyer,B) ::
ask(C,Ma,Mo, Y ) ⇒ a(seller, S) ← need(C : car,Ma : make, Mo : model, Y : year)

price(C,Ma,Mo, Y, P ) ⇐ a(seller, S) then
buy(C,Ma,Mo, Y, P ) ⇒ a(seller, S) ← afford(C,P : Price)

owns(C,Ma,Mo, Y )← sold(C,P ) ⇐ a(seller, S)

a(seller, S) ::
ask(C,Ma,Mo, Y ) ⇐ a(buyer,B) then

price(C,Ma,Mo, Y, P ) ⇒ a(buyer,B) ← instock(C,Ma,Mo, Y, P )
buy(C,Ma,Mo, Y, P ) ⇐ a(buyer,B) then

sold(C,P ) ⇒ a(buyer,B)

C = Colour;Ma = Make;Mo = Model;Y = Y ear

Figure 1: Buying-selling IM

peer1 can then re-rank the IMs according to its matching scores and choose the one
that has the highest score.

The top ranked IM is the one shown in Figure 1. In this figure, we indicate the
types of the arguments through using the type name as the argument name: for
example, need(Item) indicates that the object that instantiates the variable Item
should be of type item.

• peer1 performs automated matching between its OKC (which describes the actions
it can perform when it is playing the part of buyer) and the constraints that are on
the role of buyer in the top ranked IMs.

Example 1 (Perfect Matching) peer1 has a buying OKC that is able to interpret
the following constraints:
require(Model,Make,Year,Car)
afford(Item,Price)

peer1 uses the matcher to determine how similar these abilities are to the constraints.
The matcher can trivially determine that afford(Item,Price) is a perfect match for
afford(Car,Price) because Item can be instantiated to the car function, and simple
matching can indicate that require(Model,Make,Year,Car) is semantically and syn-
tactically identical to need(Car,Make,Model,Year) because require and need can be
determined to be semantically identical and the ordering of arguments is not seman-
tically significant (though in reality, the context of these terms may be needed to
determine that they are identical rather than merely similar).

peer1 can therefore determine that its OKC is a perfect match for the buyer role
described in Figure 1.

It will report a matching score of 1 to the subscription process. The peer must also
develop the set cm and the messages ϕ ∈ Φ that it plans to commit to. We therefore
have:
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cm1 = {require(Mo,Ma, Y, C)}
cm2 = {afford(Item, P )}

ϕ1 = ask(C : car,Ma : make,Mo : model, Y : year)
ϕ2 = buy(C : car,Ma : make,Mo : model, Y : year, P : price)

Any reference to objects in peer1’s ontology can be annotated with a reference to
that ontology: either a URI where the entire or part of the ontology can be found
or a path from within the ontology. Such ontological annotation is not essential;
however, a peer that does not properly explain its terms in such a manner is likely
to be less preferred than one that does, since it is less easy for other peers to
work out the consequences of interacting with such a peer. As we have seen be-
fore, other peers have no way of verifying that peer1 will actually use the ability
require(Mo,Ma, Y, C) to satisfy the constraint need(C,Ma,Mo, Y ); it may be that
he has no such ability and is lying. This is one of the reasons why it is important
to factor in a trust score.

Example 2 (Approximate Matching) peer1 has a buying OKC that is able to
interpret the following constraints:
require(Auto,Model,Make)
afford(Item,Quantity,Price)

The matcher cannot determine a perfect match between these abilities and the con-
straints on the buying role. For the first constraint, it can determine that require
matches need and that Auto matches Car but the constraint has an extra argument
Year that has no corresponding argument in the ability. Conversely, peer1’s ability
afford(Item,Quantity,Price) has an extra argument Quantity that is not mirrored in
the constraint.

However, it can find an approximate match. peer1’s require can match to the con-
straint need if the Year argument is dropped, and likewise peer1 can ignore its
Quantity argument to find a perfect match for afford. The matcher will provide
a quantitative score for how similar these approximate matches are (the process by
which this is done is not discussed here) and the average score of all these matches
determines peer1’s matching score for this role. If this matching score is low, peer1
will probably not want to participate and will attempt to find a better IM. If the score
is high enough that peer1 still wishes to participate, he may do so but must make
this matching score publicly available.

The matching process will produce a score 0 ≤ mpeer1(c) < 1 for the quality of
the match on each constraint c: perhaps 0.8 for the first constraint and 0.85 for
the second. How to combine these two scores is a complicated issue that depends
on the whether these constraints lie on a choice branch of the interaction model’s
state-space or not. That is, failing to fulfil this constraint will definitely break the
interaction or not, and so on. This issue should be dealt with by the matcher, which
we do not discuss in this paper. To simplify our example, we assume we can take
the average of these scores, so peer1 (assuming it was honest) would report a score
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of mpeer1 = 0.825. It must also, as in the exact matching example, report cm and
the messages ϕ ∈ Φ that it plans to commit to. In this case,

cm1 = {require(Auto,Mo,Ma)}
cm2 = {afford(Item,Quantity, Price)}
ϕ1 = ask(C : auto,Ma : make,Mo : model, Y : ⊥)
ϕ2 = buy(C : item, P : price)

The reported mappings can also be used by other peers both to verify that they agree
with the matching score and so that they can see where these areas of inexactness
lie.

• peer1 subscribes as a buyer to IM1. In order to subscribe, it must provide its
matching score and details about where it failed to match as discussed above.

As mentioned earlier in this document, commitments must be to messages rather
than to constraints because message passing can be directly observed whereas con-
straint satisfaction cannot. However, the semantic content of messages is given by
the constraints on them and so in practice what it means to commit to a partic-
ular message is to commit to giving the message a particular semantics through
instantiating the variables passed in that message in a particular manner; that is,
according to the constraints or, if the peer is not able to satisfy the constraints
exactly, according to the mappings provided by the peer.

Therefore, although commitment is really to messages, one can view these mappings
as constituting the commitments the peer is making. It should not be blamed for
failing to exactly satisfy the constraints on an IM if it has committed to satisfying
an altered version of the constraint; it can only be expected to satisfy what it has
committed to. As discussed earlier, peers can never directly observe how other peers
are satisfying constraints. However, much information about this can be deduced
from type checking the variables in the message against the mapped constraints and
peers are therefore able to make educated guesses as to whether the peers adhered
to their commitments to these mapped constraints.

Note that peer1 is not proposing a change to the IM as described in Figure 1;
peers cannot change IMs on-the-fly during interactions. Instead, what the peer is
saying is that it will satisfy the constraint - thus instantiating the variables - not
by satisfying the expected constraint need(car(Make,Model, Y ear, Colour)) but
by satisfying the similar constraint require(car(Make,Model, Colour)). Since the
Y ear variable does not appear in this new constraint, this will not be instantiated
and an uninstantiated variable will be passed in the message (if the new constraint
had an extra argument, it would not be possible to discuss this in the IM and
it would therefore be ignored.) Other peers can judge whether a commitment to
satisfy this new constraint will suffice; commitments to satisfy altered constraints
may often lead to results and instantiations that are not desired by other peers.

• Imagine that every role in the IM now has peers subscribed to it; that is, there were
already peer(s) subscribed to all the other roles in the IM: in this case, to the selling
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role, whereas the buying role was previously unsubscribed. Once a peer (peer1) has
subscribed to the buying role, the interaction is ready to commence.

• Let us imagine that the seller role has two peers subscribed to it: peer2 and peer3.
These peers will have already provided their matching score and details of their
precise commitments to the subscription service. This information is sent to the
other peers potentially involved in the interaction.

• Where necessary (see Algorithms 2 and 3), trust scores must be calculated.

There are many commitments involved in committing to a role: a commitment to
each message to be passed, each of which can be reduced to a commitment to satisfy
each of the constraints on that message in the manner specified in the matching
results (or as specified in the IM if no matching information is given.) Users may,
if they desire, weight particularly commitments more heavily than others because
they feel that these commitments are particularly pertinent, though we would not
expect such weighting to be the norm as it requires users to get involved at the level
of message passing.

To compute the trust measure on, for example, a message sold(car) (in this example
we use sold(car) instead of sold(C : car, Price : price) for simplification), the
following formula should be calculated:

T (b, s, 〈imBS, seller, sold(car), sold(mercedes), {instock(C,Ma,Mo, Y, P )}〉) =

1−
∑
ϕ′

PtI(ϕ′|sold(mercedes)) log
PtI(ϕ′|sold(mercedes))
Pt(ϕ′|sold(mercedes))

(15)

In the above equation, b is the buying peer interested in computing the trust score
for the peer s playing the role of a seller in the buying selling interaction model
imBS of Figure 1. The trust score is to be computed on the specific action of
selling a car. Peer b is interested to know how much it can trust peer s to send it a
mercedes. Note that while sold(car) refers to the original message of the interaction
model, the seller s could have committed to sold(mercedes).

To compute equation 15, an ideal distribution of enactments, PtI(ϕ′|sold(mercedes)),
needs to be defined. We propose a default distribution, which may be altered by
the user to fit their particular requirements. In the default distribution, we assume
that the only acceptable value is sold(mercedes):

PtI(ϕ′|sold(mercedes)) =

{
1, ϕ′ = sold(mercedes)
0, otherwise

(16)

Along with the ideal distribution of enactments, the realistic probability distribu-
tion, Pt(ϕ′|sold(mercedes)), should also be obtained in order to compute the trust
score of Equation 15. Note that this realistic distribution should be computed for
all values ϕ′ of the set Focus, the set of all expected terms. The set Focus is con-
structed based on the ontology of the peer and the message expected in LCC. It

22



basically represents what peer b thinks are all the possible messages that may be
received. For example, if the message expected is sold(car), the buying peer b may
define Focus as the set {sold(mercedes), sold(ford), sold(honda), sold(bmw), ...}.
In what follows, we show how the realistic probability distribution may be computed
for one possible value of ϕ′: sold(ford). Pt(sold(ford)|sold(mercedes)) is then
computed accordingly:

Pt(sold(ford)|sold(mercedes)) =
P (can(sold(ford))).P (does(sold(ford))|commit(sold(mercedes)))

(17)

P (can(sold(ford))) represents the capability of performing sold(ford). The database
of previous experiences is consulted to see if the peer is capable of performing
sold(ford). The peer is said to be capable of performing sold(ford) if it has per-
formed this action at least once in the past. However, since capabilities are related to
constraints rather than messages, the similarity is then computed on the constraints
rather than the messages. This is done by making use of cm, which is the constraint
the peer is committing to (i.e. in our example, it is {instock(C,Ma,Mo,Y,P)}).
Therefore, P (can(sold(ford))) is computed as follows:

P (can(sold(ford))) =
∏

φ∈{instock(C,Ma,Mo,Y,P )}

max{sim(φ′, φ)|φ′ ∈ Hs}

max{sim(φ′, {instock(C,Ma,Mo, Y, P )})|φ′ ∈ Hs}
(18)

where:

Hs = ∪{c′m|
〈s, , {..., 〈commit(s, , 〈im, r,m, ϕi, c′m〉, ), ϕ, g, d〉, ...}, 〉 ∈Mb ∧ value(d) ≥ ζ}

(19)

In other words, the set Hs is the set of constraints that have been successful in the
past, where success is measured through the threshold ζ.

After obtaining the probability of the peer being capable of performing sold(ford),
we now need to assess how much the peer’s willingness in performing sold(ford)
is trusted given that it has committed to sold(mercedes). The list of previous
experiences µi of the buyer’s database Mb is consulted. However, this time we need
to study the results of all previous commitments similar to our current commitment
sold(mercedes) in order to obtain the probability of having sold(ford) currently
occur. Note that the database Mb might include the experience of other peers,
which have been obtained through gossip, weighted according to how much reliable
does the peer think this piece of gossip is.

Let us consider the following previous experience with a commitment relatively
similar to sold(mercedes):

µx = 〈s, imX, {〈commit(s, , 〈imX, salesman, deliver(car), deliver(mercedes),
require(Make)〉, 15), deliver(bmw), 0, excellent〉}, 〉
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Using the knowledge from experience µx, P (sold(ford)|sold(mercedes)) is then up-
dated as follows (again, we use P (sold(ford)|sold(mercedes)) instead of
P (does(sold(ford))|commit(sold(mercedes))) for simplification):

P (sold(ford)|sold(mercedes)) = S · R15(b, s, µx) + (1− S) · P15(sold(ford)|sold(mercedes)))
(20)

where S represents the similarity between experiences, and is defined as:

S = (1− |Sim(deliver(bmw), deliver(mercedes))− Sim(sold(ford), sold(mercedes))|).
Sim(deliver(mercedes), sold(mercedes))

(21)
and R represents the reliability of the previous experience, which is defined as:

R15 = P (deliver(bmw)|deliver(mercedes))+
(1− P (deliver(bmw)|deliver(mercedes))) · P (deliver(bmw)|deliver(mercedes))

(22)

Assuming that the similarity between deliver(bmw) and deliver(mercedes) is 0.8,
the similarity between sold(ford) and sold(mercedes) is 0.8, and the similarity
between deliver(mercedes) and sold(mercedes) is 0.6. This implies that S = (1−
|0.8− 0.8|) ∗ 0.6 = 0.6. Also, assume that the probability of delivering a bmw, given
that the peer committed to deliver mercedes, based on the new experince µx is 0.7.
Therefore, R15 = 0.7+(1−0.7)·0.7 = 0.91. Finally, assume that the propabibility of
P15(sold(ford)|sold(mercedes)) has been computed earlier and found to be 0.48. As
a result, Equation 20 will be evaluated as follows: P (sold(ford)|sold(mercedes)) =
0.6 ·0.91+(1−0.6) ·0.4 = 0.706. Therefore, taking into consideration the experience
µx, the probability that the seller will sell a bmw, given that it has committed to
mercedes, is now raised from 0.4 to 0.706.

Finally, the time decay effect on the knowledge of the previous experience is then
taken into consideration by applying the following:

Pt+1(sold(ford)|sold(mercedes)) = (1− 0.95)
1

size(Focus)
+ 0.95.MRE(Pt−1,P)

(23)
where 0.95 is chosen to be the default time decay rate, the specification of MRE is
left for future work.

Note that Equation 20 should be computed for all appropriate experiences of the
database Mb. But since Equation 20 requires the computation of Equations 21
and 22, and its result is always updated by Equation 23, then Equations 20, 21, 22,
and 23 should all be repeated for every appropriate experience in the database Mb.
Also note that these computations require the use of trust and probability scores
at previous timesteps. This implies that the experiences in database Mb should
be sorted by time. For each time step (starting from timestep 0 and ending at the

8Note that the probability distribution is initially set to be 1/size(Focus). Then, at every time-step,
it gets modified with new experiences. In this example, we assume the probability at timestep 15 has
already been computed.
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current timestep), Equation 20 (along with equations 21, 22, and 23) is computed for
all experiences of that timestep. This is followed by the computation of Equation 17
(which require the computation of Equation 18 as well) for all possible outcomes
of ϕ′ of the set Focus. Finally, the final trust score of Equation 15 (which require
the computation of Equation 16 as well) may be computed. One of the algorithms
presented in Section 3 is then applied to take into consideration both the matching
and trust scores in selecting the appropriate peer.

• Each peer must decide which other peers it wishes to be involved with. This decision
is a combination of the matching score that each peer has provided and a trust score
(as computed in the last step) for each peer. This combination is possibly done in
the manner described in either Algorithm 2 or Algorithm 3.

In the current kernel, peers are only allowed to make boolean yes/no decisions about
other peers; they cannot rank them in order of preference. Peers can use Algorithms
2 or 3 to find the best peer, or to find the n best peers and agree only to work with
them. Alternatively, these algorithms could be adapted so that they return any
peer over a certain threshold. However, later adaptations of the kernel should allow
peers to rank their preferences.

• Every time a peer receives a message, it is able to observe whether the peer that
committed to send that message honoured its commitment or not. If the message
is semantically correct according to the commitments made, this commitment is
considered to be honoured and the function g (outcome) can be instantiated to >.
If the message is considered semantically incorrect or is not received, g is instantiated
to ⊥. However, as discussed previously, a failure to honour a commitment to passing
a particular message actually means a failure to satisfy at least one of the constraints
on that message in the way specified. It is, in the general case, not possible to pin
this down to a failure of a particular constraint and therefore all constraints attached
to that message must be blamed equally.

• This correct/incorrect judgement discussed in the previous point, which can be anal-
ysed automatically, is just one aspect of judging whether an interaction is successful
or not. The other aspect of evaluating whether commitments have been honoured
or not is the function d, which is instantiated to {bad, neutral, good, very good}
depending on user feedback. It is possible for a peer to correctly honour all its com-
mitments and yet provide poor service; for example, selling a car that conforms to
all the explicitly specified requirements and yet is somehow substandard. Therefore,
feedback from the user is also very important in analysing how trustworthy a peer
is. Feedback from the user would usually be given for a whole interaction rather
than for a particular commitment to a message; users would not usually be involved
in an interaction on such a low level. The overall judgement for an interaction can
therefore be generalised to apply to each commitment. This may result in incorrect
information for some commitments; however, it is not otherwise possible to factor
in user feedback.

For example, at the end of the interaction, the seller would add the following to its
database of experiences:

25



µ = 〈b, buy sell, {〈commit(s, b, 〈buy sell, seller,
send(buy(C,Ma,Mo, Y, Price)),
send(buy(C,Ma,Mo, Y, Price)),
{afford(Item,Quantity, Price)}〉, 13),

send(buy(C,Ma,Mo, Y, Price), 1, fair)〉}, null〉

This implies that in the interaction model buy sell, the buyer b has committed to
sending all appropriate messages. This includes the message buy(C,Ma,Mo, Y, Price),
the semantics of which are defined by the commitments to constraints that the buyer
makes. Assuming that the buyer has provided the mappings discussed in Example
2 (approximate matching), this constraint will not be the one specified in the IM
but the mapped constraint, which is therefore the one that is listed. If, at the end of
the interaction, everything has gone well, the commitments’ outcomes are therefore
automatically given a mark of 1. However, if the seller wasn’t entirely satisfied with
the buyer’s performance, then the user’s subjective remark fair is added. Note that
null at the end of the tuple implies that no further commitments were produced by
this interaction.

5 Conclusions and Further Work

This paper outlines our approach to the application of trust and matching judgements to
interactions in order to make an assessment of whether an interaction is likely to be ‘good
enough’. However, much remains to be done:

• The question of exactly how commitments that arise as a consequence of interactions
is dealt with must be explored in more detail. This issue is alluded to in this
document but further exploration is necessary.

• The question of the combination of IMs to make compound IMs is also alluded to
but not fully dealt with in this document. Judging whether subsequent IMs that
must be committed to are likely to result in a ‘good enough’ outcome may be a
difficult process and needs to be addressed in more detail.

• We need further research on how reputation will fit into trust measurements. We
have already described how reputation may be shared through gossip. However, in
order to determine how much credence is given to each piece of gossip, we need to
assess issues such as social grouping to determine whether such information is likely
to be unbiased. This problem has already been addressed in a thorough manner
(cite Jordi’s work and other relevant stuff) and we hope to incorporate much of this
research into our assessment.

• The ideas within RepuRank need to be further developed and incorporated into the
trust procedure.
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• Extensive testing must be done to assess how successful these trust measures are in
the OpenKnowledge context and to evaluate which method of combining matching
and trust gives the best results. Achieving reliable results from the process requires
a large number of disparate peers in different contexts to test on and therefore will
be difficult to do until the system is well developed.
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