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1 Introduction

The OpenKnowledge (OK) project is predicated on the idea that the peers involved in
the peer-to-peer network do not have to have prior agreement on the representation and
vocabulary they use or conform to pre-established standards. Instead, peers are permitted
to represent their knowledge in any way they choose and the interaction between these
disparate peers is controlled via interaction models(IMs), which describe how specific
interactions proceed. These IMs describe the order of the message passing, the messages
to be passed and the constraints on those messages for every peer in the interaction
and are written in LCC; see Figure 2 for an example. Naturally, since representation
and vocabulary are not fixed, identifying, interpreting and communicating via these IMs
requires complex matching techniques. In the basic case, this matching can be done by
hand, with users choosing IMs that fit with their knowledge representation or developing
bridges that link the representation in the IM with their own representation. However,
this puts an onerous burden on users; the system can only be usable on a large-scale if
these matchings can be made automatically or interactively.

This document is intended to outline where the need for approximation occurs in OK
and how appropriate approximations can be discovered. Once approximations have been
discovered, we also need to be able to evaluate how good they are. The complex issue
of how we evaluate approximations to decide how good they are and then match this
against some notion of ‘good enough’, and how interactions with the user can be used to
guide this, is introduced in this document but will be discussed in detail in the following
deliverable.

Approximations are necessary where matching needs are discovered and cannot be met
with perfect matches. We therefore briefly describe the matching needs of OK and then
go on to describe how matching would be done in these cases, assuming a perfect match
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can be found, before discussing how we deal with failure to find these perfect matches
through introducing approximate matching and methods for evaluating how good they
are.

At this time, we consider only the matching requirements of a single peer once an IM
has been found for the interaction, which can be divided into three different areas:

• finding appropriate roles to play through interpreting role identifiers (which may be
determining which (if any) of the roles it wishes to play in the IM it has chosen to
invoke or, for a peer that is requested to join the interaction, deciding whether it
wishes to play the role it is invited to play);

• interpreting messages;

• fulfilling constraints on the messages to be passed.

The document is arranged as follows. Section 2 describes where the matching needs
arise in an OK interaction and what we can determine about the objects that needs to be
matched. Section 3 outlines a motivating scenario in which matching is necessary. Section
4 describes how the context of the interaction is exploited to provide more information
to the matching process: determining more about what the interaction is doing can help
determine what objects within the interaction might mean, so this information is processed
before the matching process begins. Sections 5 and 6 describe how structured objects are
matched against one another either exactly or approximately, assuming that matching
at node level can be done. Sections 7 and 8 describe how this node matching is done,
either exactly or approximately. Section 9 discusses the notions of local and global good
enough answers and how we intend to approach these issues, and summarises the paper
and draws conclusions.

2 Matching Needs in OpenKnowledge

We describe the precise scenario in which the matching will take place, explaining the
basic OK system and describing when and why these may have to be approximate. Since
interactions are conducted according to message passing defined by the IMs, which are
shared by all the peers taking part in the interaction, there is no possibility of mismatches
in the ordering or types of messages sent, and thus we do not need to consider the matching
of complete IMs.

We identify three areas in which mismatches could occur:

1. Role identifiers: these are usually atomic but may have some number of argu-
ments (concerning information that the role must carry). These indicate to the
peer whether the role is likely to be appropriate;

2. Constraints: these give conditions on and meaning to the messages. A peer cannot
fulfil a role unless it can interpret and satisfy the constraints on the messages it must
send within that role. These are first-order terms;
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3. Message contents: the contents of messages are determined to a large extent
by the IMs and the constrains; however, even with this information, peers cannot
predict how other peers will instantiate variables in messages and must be able to
interpret these themselves during run-time.

A key aspect of the matching in OK is that these areas of mismatch (with the exception
of some role identifiers) have structure, and thus matching must both deal with atomic
semantic mismatches (what the terms mean) and with structural mismatches (how these
atomic terms are combined). In this paper, we describe the precise problem in more detail,
discuss existing techniques for these problems and introduce a technique for combining
known semantic and structural matching techniques to produce a semantic tree matching
technique. We then go on to detail how these can form approximate matchings between
structured terms if no precise matchings can be found. This is a new approach to the
problem of mismatches in knowledge bases with structure as well as semantics, and may
prove to be important not only to the OpenKnowledge project but also to a much broader
domain, particularly database querying.

The techniques we describe are applicable to first-order or atomic structures, and
can thus deal with mismatches in role identifiers, constraints and some kinds of message
contents. However, if message contents are expressed according to some other kind of
representation, such as OWL, these techniques would not, as they stand, be applicable.
Further investigation into what kinds of message contents representations the system
should be able to deal with and how these techniques should be extended to allow for
that will be necessary. The focus on this document is on matching that allows peers to
interpret IMs and not on the messages that are passed as part of these interactions.

We assume that every peer has the ability to perform matching to suit its own re-
quirements because the matching component is downloaded and installed, together with
the query routing, visualisation and interpreter components, when initially setting up as
an OK peer. This avoids the problem of forced sharing of information: if matching were
necessarily done by a specialised peer, this would require peers with matching needs to
reveal their full knowledge base to that peer. Nevertheless, it may be the case that certain
peers are able to provide matching assistance, through a knowledge of previous matchings
that have been used to peers that require such assistance.

3 Motivating scenario

Consider the situation in which a user wishes to purchase a particular item. The user’s
peer has already participated in a buying role and thus has an interaction model describing
how this is done, illustrated in Figure 2. Each user can organise his information about
IMs as a classification that gives context to the meaning of the IM. For example, the
classification of the user may be as illustrated in Figure 1. The particular buying IM
that the user intends to use is the one found under car. Notice that there is also another
buying IM in the user’s classification found under truck. It may be that these IMs are
different: the user has different considerations to consider when buying a car than when
buying a truck. However, it may be that these two IMs are the same. A user could have
many copies of the same IM that are stored in different categories. The purpose of this
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is that information can be derived from the context of the IM in the classification: the
fact that the IM is intended for buying cars as a means of transport can have a material
effect on the matching process. This is discussed in Section 4.

IMs

Transport
Car

Buy
Rent
Sell

Truck
Buy
Rent

Train
Buy ticket
Check timetable

Business

Figure 1: The user’s IM classification

The user chooses this IM and then propagates a request for peers to play the roles it.
The buying role will presumably be played by a peer owned by the user as the user wishes
to buy the goods for himself. In this case, there will be no constraint matching problems
for the buying peer, as the IM is one that the user, and hence its buying peer, has used
before and the matching issues will therefore already have been dealt with. However, any
peer that wishes to play the selling agent will have to ensure that it is able to satisfy the
constraints, and thus must also be able to interpret the constraints by mapping them to
terms in its own knowledge base. Each peer must return a score of how well it is able
to play the role so that it can be decided which peer to initiate the interaction with;
this score is derived from the quality of mappings between the constraints of the IM and
the peer’s knowledge base. If the peer already knows these constraints, the score will be
perfect.

Consider a peer that wishes to play the shopkeeper role. It already has experience at
playing a shopkeeper and therefore has encountered constraints that pertain to a shop-
keeping role. These may (or may not) be useful in interpreting the constraints in this
new IM, and additionally any other constraints that the peer has encountered in previous
(thematically non-related) interactions could be pertinent. Figure 3 shows an IM that this
peer has participated in before, the constraints of which it therefore can interpret. When
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the peer is trying to interpret the constraints shown in Figure 2, these will be potential
candidates for mapping.

price(X,P) <= a(shopkeeper,S) then

sold(X,P) <= a(shopkeeper,S)

a(buyer,B) ::

ask(X) <= a(buyer,B) then

buy(X,P) <= a(buyer,B) then
sold(X,P) => a(buyer,B)

−> has(X)

ask(X) => a(shopkeeper,S) <− require(X) and shop(S) then

buy(X,P) => a(shopkeeper,S) <− spare(money(P,C),X) then

a(storemanager,S) ::

price(X,P) => a(buyer,B) <− carry(X,P) then

Figure 2: The buyer’s IM

ask(X) => a(shopkeeper,S) <− need(X) and shop(S) then
price(X,P) <= a(shopkeeper,S) then
buy(X,P) => a(shopkeeper,S) <− afford(X,P) then
sold(X,P) <= a(shopkeeper,S)

a(shopkeeper,S) ::
ask(X) <= a(buyer,B) then

buy(X,P) <= a(buyer,B) then
sold(X,P) => a(buyer,B)

−> have(X,S)

a(purchaser,B) ::

price(X,P) => a(buyer,B) <− stock(N,P,X) then

Figure 3: The seller’s IM

Before the shopkeeper peer can appropriately participate in this interaction, it must
first check that it is happy with the role descriptor (storemanager) and then ensure that
it can interpret the constraints in the interaction model. Any constraints that it cannot
interpret it will certainly not be able to satisfy, and hence, if such exist, there is no point
commencing the interaction.

The shopkeeper peer must first decide whether it wishes to play the role storemanager
in place of shopkeeper. It can use the available node matching techniques to determine
that storemanager is a synonym of shopkeeper, and is thus content to take on this role.
The role name gives no definite information about what the peer will have to do in the
interaction but rather gives a general idea so that the peer can decide whether to go to
the expense of generating potential mappings.

In the IM to be used for the interaction (Figure 2), there is only one constraint to
be satisfied in playing the storemanager role: carry(X, P ). IMs allow information to
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be attached to the objects in them, so that it is possible, for example, to attach class
information to the arguments of constraints. The information attached to this constraint
is that the variable X is of type item and the variable P is of type price. The role
of shopkeeper, described in Figure 3, which the peer has played before, also required
one constraint to be fulfilled: stock(?Number, ?Item, ?Price) (with class information
included). The peer can therefore use this constraint (along with any other constraints
it may know) to interpret the unknown constraint by attempting to map them. There
constraints on the buying role do not need to be interpreted by the shopkeeping agent;
the fact the description of buying in its original IM and in the new IM are different is not
of direct concern to the shopkeeping agent, as it only needs to interpret constraints that
it needs to fulfil as part of its role. Additionally, the buying agent will not be concerned
with mapping these constraints to one another as it is not concerned with (and is unlikely
to have access to) the buying description in Figure 3; it only needs to fulfil the constraints
in the chosen IM, which it is already able to do, since it has used this IM before.

The matching process must find semantic links between the elements of the two con-
straints to be mapped: for example, WordNet lists carry as a synonym of stock and the
types Item and Price in the shopkeeper’s original IM are the same as the types Item and
Price in the buyer’s IM. Semantic tree matching is then employed to use this element-
level matching information to find a map that takes account of the structure. The ‘good
enough’ measures employed during this matching process then give a score reflecting the
quality of the match between these two constraints. This score allows the shopkeeping
peer to determine whether this map is the best it can find between the constraint it needs
to fulfil and its known constraints. Once the peer has found its best possible scores for
all the constraints it must map (in this case, only one), this information is fed back to
the process so it can be determined whether our shopkeeping peer is better at performing
the role than any other peers that wish to take part and also to ensure that the highest
scoring peer meets some ‘good enough’ threshold; if not, the interaction will not proceed
as it is unlikely that it could be performed satisfactorily.

4 Linguistic preprocessing

The goal of the linguistic preprocessing step is to automatically translate ambiguous
natural language labels taken from the term tree elements into an internal logical language.
We use a propositional description logic language (LC) for several reasons. First, given
its set-theoretic interpretation, it ”maps” naturally to the real world semantics. Second,
natural language labels, e.g., constant and type names in term tree, are usually short
expressions or phrases having simple structure. These phrases can often be converted
into a formula in LC with no or little loss in the meaning [7]. Third, a formula in
LC can be converted into an equivalent formula in a propositional logic language with
boolean semantics. Apart from the atomic propositions, the language LC includes logical
operators, such as conjunction ( ⊓), disjunction (⊔ ), and negation ( ¬). There are also
comparison operators, namely more general ( ⊒), less general (⊑ ), and equivalence (=).
The interpretation of these operators is the standard set-theoretic interpretation.

We define the notions of concept of label and concept at node similarly to semantic
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matching [6]:

• Concept of a label, which denotes the set of documents (data instances) that one
would classify under a label it encodes;

• Concept at a node, which denotes the set of documents (data instances) that one
would classify under a node, given that it has a certain label and that it is in a certain
position in term tree and position of the term interaction model in IM classification.

Notice that, as opposed to semantic matching, the concept of node depends not only
on its position in the term tree but also on the position of the IM in IM classification (see
Figure 1 for example).

Concepts of labels are computed in the following four macro steps:

1. Tokenization. Labels of nodes are parsed into tokens by a tokenizer which recognises
punctuation, cases, digits, stop characters, etc. Thus, for instance, the label Types
of payment becomes types, of, payment.

2. Lemmatization. Tokens of labels are further lemmatised, that is, they are morpho-
logically analysed in order to find all their possible basic forms. Thus, for instance,
types is associated with its singular form, type.

3. Building atomic concepts. An Oracle (such as WordNet) is queried to obtain the
senses of lemmas identified during the previous phase. For example, the label types
has the only one token types, and one lemma type. From WordNet we find out that
type has six senses as a noun and two as a verb.

4. Building complex concepts. When existing, all tokens that are prepositions, punctu-
ation marks, conjunctions (or strings with similar roles) are translated into logical
connectives and used to build complex concepts out of the atomic concepts con-
structed in the previous phase. Thus, for instance, commas and conjunctions are
translated into logical disjunctions, prepositions, such as of and in, are translated
into logical conjunctions, and words like except, without are translated into nega-
tions. Thus, for example, the concept of label Types of payment is computed as
CTypesofpayment = CTypes ⊓Cpayment, where CTypes = 〈type, sensesWN#8〉 is taken to
be the union of eight WordNet senses, and similarly for payment. Notice that natural
language and is converted into logical disjunction, rather than into conjunction.

As the result the logical formula for concept of label is computed as a full propositional
formula were literals stand for atomic concepts of labels. Concepts at nodes are written
in the same propositional description logic language as concepts of labels. Term trees
are hierarchical structures where the path from the root to a node uniquely identifies
that node (and also its meaning). We define the logical formula for a concept at node
as a conjunction of concepts of labels located in the path from the given node to the
root. For example, in the tree A, the concept at node four is computed as follows:
C4 = Cbuy ⊓ Ctype ⊓ Cpayment ⊓ Ccash.

In order to constrain the set of possible concept at node interpretations the sense
filtering techniques are used. The main goal of sense filtering techniques is to filter out
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Make Colour

Nissan Yellow

(P)

(T)

(C)

(T)

(C)

P = predicate; T = tree; C = constant

Figure 4: Constraint car(nissan, yellow) expressed as a tree

irrelevant (for the given matching task) Oracle senses from concepts of labels. For all
concepts of labels we collect all their ancestors and descendants. We call them a focus
set. Notice that interaction model itself can be classified in tree like structure (see Figure
4 for example). Therefore the focus set is enriched with concept of labels of the IM and
its ancestors in the IM classification. Then, all Oracle senses of atomic concepts of labels
from the focus set are compared with the senses of the atomic concepts of labels of the
concept. If a sense of atomic concept of label is connected by an Oracle relation with the
sense taken from the focus set, then all other senses of these atomic concepts of labels
are discarded. Therefore, as a result of the sense filtering step we have (i) the Oracle
senses which are connected with any other Oracle senses in the focus set or (ii) all the
Oracle senses otherwise. After this step the meaning of concept of labels is reconciled
with respect to the knowledge residing in the tree structure.

5 Exact Semantic Tree Matching

The simplest case that the matching component has to deal with is the case of discovering
an exact match: for example, matching need(?Item) to require(?Item). In this section, we
describe the issues involved in exact matching and the approach taken by the matching
process, which will then be extended in section 6 to deal with approximate matching.

In order to match first-order terms, we consider them as trees. LCC allows type
information to be given about arguments of constraints, though we cannot always rely on
designers providing this information and must be able to continue with matching even if
type information is missing (though naturally this will make the matching less reliable).
A constraint such as car(nissan, yellow), with type information stating that the first
argument was of type make and the second was of type colour, would be represented as
shown in Figure 4.

We assume that constraints in LCC are written in CNF; role descriptors and message
contents appear individually. In order to satisfy a set of constraints on a message in an
IM, it is necessary, in the simple case, to find a particular known constraint that can be
used to interpret, through matching, and then satisfy at least one of every disjunction
in the CNF. In a more complex situation, we might match a single constraint to many
constraints, or match many-to-many; however, we only consider one-to-one matching in

8



this document.
First-order terms are represented as trees and then matched against each other. Par-

ticular attention must be paid to the structure of these trees. Horizontal ordering within
the trees is not important: a reordering of arguments of a predicates, for example, does
not constitute a mismatch. However, vertical ordering is key and must be considered by
the matching process. Information that is helpful for structural matching can be gleaned
from the structural context of each node: the path between that node and the root node.

At each node, semantic node matching must be done to determine which node in the
matching tree it corresponds to, and, when extended to deal with approximate mapping,
how strong this correspondence is. Semantic structure matching is thus the combination
of the results of semantic node matching in such a way as to respect the structure of the
tree to be matched.

In order for this matching process to be possible, each peer must have a set of known
constraints to which these IM constraints (or role descriptors or message contents) can
be matched. It can be assumed that any peer will have some notion of how to play
some role according some particular IM. Additionally, it may have been asked at some
point to play that or a different role according to a new IM, in the course of which it
will have encountered new constraints that it will have to have interpreted. These known
constraints are what the matching process must refer to. Initially, when the peer knows
of very few constraints, this process may fail quite often - though if the peer is performing
a role similar to the one it intended to perform, many of the constraints may already have
parallels in its knowledge base. It would be helpful to have some kind of user interaction
process to assist the user to build new constraints into its knowledge base in the case
where there is nothing already in the knowledge base that can be matched to. As the
peer becomes more experienced, more constraints will be known about, so matching will
be possible in more situations.

In the IM, the constraints have a structure: they are in CNF. The known constraints
may also have a structure because these will often be constraints from some other IM.
However, the structure of these known constraints is not relevant and can be discarded in
the matching process. Therefore, each conjunction of disjunctions is mapped individually,
with one constraint found to map to one of the disjunctions. In practice, constraints will
most often be simple conjunctions, in which case every conjunct must be mapped to a
known constraint.

The above discussion assumes that it is possible to perform one-to-one matching on
constraints. This will not always be the case. We may find that one constraint is more
appropriately covered through matching to two or more constraints, or that several con-
straints are correctly interpreted through mapping to several other constraints, but that
this mapping cannot be broken down into one-to-one mappings. This matching process
is rather more difficult and is not considered in this document, which focuses on the
situation where a one-to-one correspondence can be found between constraints.

Definition 1 (Semantic Node Matching) Let n1 and n2 be two nodes in two trees T1

and T2. We say that n1 and n2 (semantically) match iff c@n1 iff c@n2 holds given the
available background knowledge, where c@n1 and c@n2 are the concepts at nodes of n1 and
n2 respectively.
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Definition 2 (Semantic tree matching) Let T1 and T2 be two trees. We say that T1 and
T2 match iff for any node n11 in T1 there is a node n21 in T2 such that

• n11 semantically matches n21;

• n11 and n21 reside on the same depth in T1 and T2 respectively;

• all ancestors of n11 are semantically matched to the ancestors of n21;

At this stage, we assume that the problem of semantic node matching has been dealt
with and can be called as a subprocess of the semantic structure matching, the details of
which are discussed in Section 7.

The following pseudo code illustrates an algorithm for exact structure matching:

1.Node struct of

2. int nodeId;

3. String label;

4. String cLabel;

5. String cNode;

6.MappingElement struct of

7. int MappingElementId;

8. Node source;

9. Node target;

10. String relation;

11.MappingElement[] exactStructureMatch(Tree of Nodes source, target)

12. MappingElement[] result;

13. exactTreeMatch(source,target,result);

14. if (allNodesMapped(source,target,result))

15. return result;

16. else

17. return null;

18.void exactTreeMatch(Tree of Nodes source,target,MappingElement[] result)

19. Node sourceRoot=getRoot(source);

20. Node targetRoot=getRoot(target);

21. String relation= nodeMatch(sourceRoot,targetRoot);

22. if (relation=="=")

23. addMapping(result,sourceRoot,targetRoot,"=");

24. Node[] sourceChildren=getChildren(sourceRoot);

25. Node[] targetChildren=getChildren(targetRoot);

26. For each sourceChild in sourceChildren

27. Tree of Nodes sourceChildSubTree=getSubTree(sourceChild);

28. For each targetNode in target

29. Tree of Nodes targetChildSubTree=getSubTree(targetChild);

30. exactTreeMatch(sourceChildSubTree, targetChildSubTree, nodesToMatch);

exactStructureMatch takes two trees of nodes (i.e., tree representation of LCC terms)
source and target as an input. Here and throughout the paper we assume that the
source tree is derived from an IM constraint and the target tree represents the term
derived from the peer capability description. exactStructureMatch returns an array
of mappings holding between the nodes of the trees if there is an exact match between
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them and null otherwise. Array of MappingElements result is created (line 12) and filled
by exactTreeMatch (line 13).

allNodesMapped checks whether all the nodes of source tree are mapped to the
nodes of the target tree (line 14). If this is the case there is an exact structure match
between the trees and the set of computed mappings is returned (line 15).
exactTreeMatch takes two trees of nodes (i.e., tree representation of LCC terms) source
and target and array of MappingElements result as an input. It recursively fills result
with the mappings computed by nodeMatch (line 23). exactTreeMatch starts from
obtaining the roots of source and target trees (lines 19-20). The semantic relation holding
between them is computed by nodeMatch (line 21) implementing the node matching
algorithm. If the relation is equivalence, the corresponding mapping is saved to result
array (lines 22-23) and the children of the root nodes are obtained (line 24-25). Finally the
loops on sourceChildren and targetChildren (lines 26-30) allow to call exactTreeMatch
recursively for all pairs of sub trees rooted at sourceChildren and targetChildren elements.

The above algorithm is designed to succeed for equivalent terms and to fail otherwise.
It expects the trees to have the same depth and for all matching nodes to have the same
number of children. When we come to consider approximate matching, we can no longer
make such assumptions. At the same time the algorithm is not sensitive to the ordering
of nodes considered to be equivalent by semantic node matching, e.g., car(Nissan,navy) is
considered to be equivalent to auto(dark blue, Nissan) if node matching returns car=auto
and navy=dark blue.

6 Approximate Semantic Tree Matching

Taking into account the heterogeneous nature of P2P network it is unlikely that most of
constraints in IMs can be exactly matched with the peer capabilities. Hence approximate
tree matching is a necessary requirement for OK system.

Definition 3 (Approximate node matching) Let n1 and n2 be two nodes it two trees T1

and T2. We say that n1 and n2 approximately match iff c@n1 R c@n2 holds given the
available background knowledge, where c@n1 and c@n2 are the concepts at nodes of n1

and n2 respectively, and where R ∈ {≡,⊆,⊇,∧,⊥, ?}.

Definition 4 (Approximate tree matching) Let T1 and T2 be two trees. We say that T1

and T2 match iff there is at least one node n11 in T1 and a node n21 in T2 such that

• n11 approximately matches n21;

• all ancestors of n11 are approximately matched to the ancestors of n21;

Here and throughout the paper we distinguish between two dimensions of approxima-
tion:

• Model based approximation (e.g., vehicle is considered to be approximate answer
on car query given that car ⊑ vehicle according to the matching process)
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• Probability based approximation (e.g., propel is considered to be approximate an-
swer on proper query given that propel = proper with 0.8 similarity (often treated
as probability) according to string edit distance matcher)

In this and in the following section we concentrate on model based approximation. Prob-
ability based approximations are discussed in section 8 devoted to element level matchers.

The following pseudo code illustrates approximate tree matching algorithm.

1.MappingElement[] approximateStructureMatch(Tree of Nodes source, target, double threshold)

2. MappingElement[] result;

3. approximateTreeMatch(source,target,result);

4. double approximationScore=analyzeMismatches(source,target,result);

5. if (approximationScore>threshold)

6. return result;

7. else

8. return null;

9. void approximateTreeMatch(Tree of Nodes source,target,MappingElement[] result)

10. Node sourceRoot=getRoot(source);

11. Node targetRoot=getRoot(target);

12. String relation= nodeMatch(sourceRoot,targetRoot);

13. if (relation!="Idk")

14. addMapping(result,sourceRoot,targetRoot,relation);

15. Node[] sourceChildren=getChildren(sourceRoot);

16. Node[] targetChildren=getChildren(targetRoot);

17. For each sourceChild in sourceChildren

18. Tree of Nodes sourceChildSubTree=getSubTree(sourceChild);

19. For each targetNode in target

20. Tree of Nodes targetChildSubTree=getSubTree(targetChild);

21. approximateTreeMatch(sourceChildSubTree, targetChildSubTree, nodesToMatch);

In contrast to exactStructureMatch, approximateStructureMatch takes as an in-
put not only source and target term trees but also threshold allowing to select highly
similar term trees. approximateTreeMatch fills result array (line 3) which stores the
mappings holding between nodes of the trees. approximationScore is computed (line 4) by
analyzeMismatches which decides the importance of source tree nodes mismatches (if
any) and calculates the aggregate score of tree match quality. If approximationScore ex-
ceeds threshold the mappings calculated by approximateTreeMatch are returned (line
6).
In contrast to exactTreeMatch, approximateTreeMatch also considers semantic re-
lations other then equivalence (line 13) and stores them in result array (line 14).

The example of approximately matched term trees is given on Figure 2. The trees on
the figure are partially matched. For example the nodes brand, Nissan, type of payment,
cash in the source tree are not matched to any node of the target tree. The importance
of the mismatched nodes is determined by analyzeMismatches routine. For example
assuming that all nodes of the tree are equivalently important and 4 out of 11 nodes of
the tree are not matched the approximation score can be 1-4/11= 7/11.

Note that approximate semantic tree matchings can be found between any two trees
for which even a single node from each has some kind of approximate semantic match;
thus finding an approximate semantic tree match between two terms is not a very strong
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result. The techniques described in this section provide a basis for which to add the
‘good enough’ measures that will be discussed later, and it is the combination of these
two approaches that provide powerful matching techniques.

7 Approximate Node Matching

The node matching algorithm takes two nodes of the term trees as an input and pro-
duces a semantic relation {≡,⊑,⊒,⊥, Idk} holding between them (where Idk stands for
I don’t know. It exploits both the knowledge produced by element level matchers and the
knowledge encoded in the term structure. The node matching algorithm is exploited by
both exact and approximate semantic tree matching algorithms in order to discover the
mappings holding between nodes in the term trees.

7.1 Semantic Node Matching

The semantic node matching algorithm converts the node matching problem into a propo-
sitional validity problem. Semantic relations are translated into propositional connectives
using the rules described in Table 1 (second column).

Table 1: The relationship between semantic relations and propositional formulas
rel(a,b) rel(a,b) translation CNF translation of Eq. 2

a ≡ b a↔ b N/A

a ⊑ b a→ b axioms ∧ contextA ∧ ¬contextB

a ⊒ b a← b axioms ∧ contextB ∧ ¬contextA

a⊥b ¬(a ∧ b) axioms ∧ contextA ∧ contextB

The only criterion for determining whether a relation holds between concepts of nodes
is whether it is entailed by the premises. Thus, we have to prove that the following
formula:

(axioms) → rel(contextA, contextB) (1)

is valid, that is, that it is true for all the truth assignments of all the propositional variables
occurring in it. contextA, and contextB are the propositional formulas for the concepts at
nodes and axioms are produced from element level relations connecting atomic concepts
of labels in the concepts at nodes. rel is the semantic relation that we want to prove
holding between contextA and contextB . The algorithm checks the validity of Eq. 1 by
proving that its negation, i.e., Eq. 2, is unsatisfiable.

axioms ∧ ¬rel(contextA, contextB) (2)

Table 1 (the third column) summarises how Eq. 2 is translated for the tasks of testing
each semantic relation. We report the translated formulas in Conjunctive Normal Form
(CNF), i.e., conjunction of disjunctions of propositional atoms, in order to simplify further
discussions. Notice that the check for equality is omitted in Table 1, since A ≡ B holds
iff A ⊑ B and A ⊒ B hold.

Let us consider the pseudo code of semantic node matching algorithm.
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1. String nodeMatch(Node source, target)

2. String contextA = getCnodeFormula (sourceNode);

3. String contextB = getCnodeFormula (targetNode);

4. String axioms=mkAxioms(contextA, contextB);

5. formula= And(axioms, contextA, contextB);

6. formulaInCNF=convertToCNF(formula);

7. boolean isOpposite= isUnsatisfiable(formulaInCNF);

8. if (isOpposite)

9. return "!";

10. String formula=And(axioms,contextA,Not(contextB));

11. String formulaInCNF=convertToCNF(formula);

12. boolean isLG=isUnsatisfiable(formulaInCNF)

13. formula=And(axioms, Not(contextA), contextB);

14. formulaInCNF=convertToCNF(formula);

15. boolean isMG= isUnsatisfiable(formulaInCNF);

16. if (isMG && isLG)

17. return "=";

18. if (isLG)

19. return "<";

20. if (isMG)

21. return ">";

22. return "Idk";

nodeMatch takes two Nodes as an input and computes a semantic relation holding
between them. Firstly, the concept of nodes for source and target are obtained (line 2-
3). Then the axioms holding between atomic concepts of labels in the concepts at nodes
are computed by mkAxioms (line 4). In line 5, nodeMatch constructs the formula for
testing disjointness. In line 6, it converts the formula into CNF, while in line 7 it checks the
CNF formula for unsatisfiability. If the formula is unsatisfiable, the disjointness relation
is returned. The same process is repeated for less and more generality relations. If both
relations hold, then the equivalence relation is returned (line 17). If all the tests fail, the
Idk relation is returned (line 22).

8 Approximate element level matching

Element level matchers take as an input either atomic concepts defined in the certain
Oracle or atomic labels. They produce the semantic relations holding between them.
Therefore in the context of OK system element level matchers produce relations hold-
ing among labels (and parts of labels) of LCC atomic terms. Notice that element level
matchers do not consider the structure of complex terms.

Currently we distinguish between 3 classes of element level matchers:

• String based matchers exploit approximate string matching techniques. They are
widely used in various schema matching systems [9, 16]. String based matchers
presented in this section are modified in order to produce a semantic relation as
output. They take as input two labels and produce a semantic relation if they
satisfy the given criteria, which is specific for each matcher. Otherwise, Idk is
returned.
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¡

Table 2: Element level semantic matchers

¡

¡ Matcher name Matcher type Input info ¡
Prefix String based ¡ Labels
Suffix String based Labels ¡

Edit Distance String based Labels ¡
nGram String based Labels ¡

WordNet Knowledge based WordNet senses ¡
Leacock Chodorow Matcher Knowledge based WordNet senses ¡

Resnik Matcher Knowledge based WordNet senses ¡
Jiang Conrath Matcher Knowledge based WordNet senses ¡

Lin Matcher Knowledge based WordNet senses ¡
Hirst-St.Onge Matcher Knowledge based WordNet senses ¡

Context Vectors Matcher Knowledge based WordNet senses ¡
WordNet Gloss Gloss based WordNet senses ¡

WordNet Extended Gloss Gloss based WordNet senses ¡
Gloss Comparison Gloss based WordNet senses ¡

Extended Gloss Comparison Gloss based WordNet senses ¡
Semantic Gloss Comparison Gloss based WordNet senses ¡

MatchMiner Knowledge based Labels/WordNet senses ¡
PowerMap Knowledge based Labels/WordNet senses ¡

¡

¡

• Knowledge based matchers take as input two concept (or synset) identifiers defined in
an external Oracle such as WordNet. They produce semantic relations by exploiting
the structural properties of the Oracle. In some cases they combine the knowledge
derived from the Oracle with statistics collected from large scale corpora. Often
knowledge based matchers are based on either similarity or relatedness measures. If
the value of the measure exceeds the given threshold the certain semantic relation
is produced. Otherwise Idk is returned.

• Gloss based matchers, similarly to knowledge based matchers, take two concept
(synset) identifiers as input and return the semantic relation holding between them.
However, gloss based matchers differ in that they use the information contained in
natural language concept descriptions such as WordNet glosses.

Element level matchers are organised in the library. Table 2 presents currently avail-
able element level matchers.

¡
Currently the matchers in the library are executed sequentially in the order presented

in Table 2 until the semantic relation other then Idk is produced. The element level
matchers library is exploited in semantic node matching algorithm. The pseudo code
illustrating the usage of element level matchers library is presented below.

1.String mkAxioms(String contextA, contextB);

2. String[] matchers;
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3. String axioms, relation;

4. matchers=getMatchers();

5. for each sourceAtomicConceptOfLabel in contextA

6. for each targetAtomicConceptOfLabel in contextB

7. relation=getRelation(matchers,

sourceAtomicConceptOfLabel,targetAtomicConceptOfLabel);

8. addToAxioms(axioms,relation);

9. return axioms;

10.String getRelation(String[] matchers,

AtomicConceptOfLabel source, target)

11. String matcher;

12. String relation="Idk";

13. int i=0;

14. while ((i<sizeof(matchers))&&(relation=="Idk"))

15. matcher= matchers[i];

16. relation=executeMatcher(matcher,source,target);

17. i++;

18. return relation;

mkAxioms takes as input two concepts at nodes contextA and contextB. It produces as
an output a set of axioms holding between the atomic concepts of labels in both concepts.
First, the element level matchers which have to be executed (based on the configuration
settings), are obtained in line 4. Then, for each pair of atomic concepts of labels in both
trees, semantic relations holding between them are computed by getRelation(line 7) and
added to axioms (line 8).
getRelation takes as an input an array of matchers and two atomic concepts of labels. It
returns the semantic relation holding between atomic concepts of labels according to the
element level matchers. They are executed (line 16) until the semantic relation different
from Idk is produced.

8.1 Prefix

Prefix is a string based matcher. It checks whether one input label starts with the other. It
returns an equivalence relation in this case, and Idk otherwise. The examples of relations
Prefix produced are summarised in Table 3. Prefix is efficient in matching cognate words

Table 3: Semantic relations produced by prefix matcher
Source label Target label Semantic relation

net network =
hot hotel =
cat core Idk

and similar acronyms (e.g., RDF and RDFS ) but often syntactic similarity does not imply
semantic relatedness. Consider the examples in Table 3. The matcher returns equality
for hot and hotel which is wrong but it recognises the right relations in the case of the
pairs net, network and cat, core.
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8.2 Suffix

Suffix is a string based matcher. It checks whether one input label ends with the other.
It returns the equivalence relation in this case and Idk otherwise. The results produced
by Suffix are summarised in Table 4. Suffix performs very similarly to Prefix. It correctly

Table 4: Semantic relations produced by suffix matcher
Source label Target label Semantic relation

phone telephone =
word sword =
door floor Idk

recognises cognate words (phone, telephone) but makes mistakes with syntactically similar
but semantically different words (word, sword).

8.3 Edit Distance

Edit distance is a string based matcher. It calculates the edit distance measure between
two labels. The calculation includes counting the number of the simple editing operations
(delete, insert and replace) needed to convert one label into another and dividing the ob-
tained number of operations with max(length(label1),length(label2)). The result is a value
in [0..1]. If the value exceeds a given threshold (0.6 by default) the equivalence relation
is returned, otherwise, Idk is produced. Edit Distance is useful with some unknown to

Table 5: Semantic relations produced by edit distance matcher
Source label Target label Semantic relation

street street1 =
proper propel =
owe woe Idk

WordNet labels. For example, it can easily match labels street1, street2, street3, street4
to street (edit distance measure is 0.86). In the case of matching proper with propel the
edit distance similarity measure has 0.83 value, but equivalence is obviously the wrong
output.

8.4 nGram

NGram is a string based matcher. It counts the number of the same ngrams (e. g.,
sequences of n characters) in the input labels. For example, trigrams for the word address
are add, ddr, dre, res, ess. If the value exceeds a given threshold the equivalence relation is
returned. Otherwise Idk is produced. The relations produced by NGram are summarised
in Table 6.
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Table 6: Semantic relations produced by nGram matcher
Source label Target label Semantic relation

address address1 =
behaviour behaviour =

door floor Idk

Table 7: Possible relationships in WordNet

Relation Description Example

Hypernym is a generalisation of motor vehicle is a hypernym of car

Hyponym is a kind of car is a hyponym of motor vehicle

Meronym is a part of lock is a meronym of door

Holonym contains part door is a holonym of lock

Troponym is a way to fly is a troponym of travel

Antonym opposite of stay in place is an antonym of travel

Attribute attribute of fast is an attribute of speed

Entailment entails calling on the phone entails dialling

Cause cause to to hurt causes to suffer

Also See related verb to lodge is related to reside

Similar to similar to evil is similar to bad

Participle of is participle of stored is the participle of to store

Pertainym pertains to radial pertains to radius

8.5 WordNet

WordNet [17] is a lexical database which is available online and provides a large repository
of English lexical items. WordNet contains synsets (or senses), structures containing sets
of terms with synonymous meanings. Each synset has a gloss that defines the concept
that it represents. For example the words night, nighttime and dark constitute a single
synset that has the following gloss: the time after sunset and before sunrise while it is
dark outside. Synsets are connected to one another through explicit semantic relations.
Some of these relations (hypernymy, hyponymy for nouns and hypernymy and troponymy
for verbs) constitute kind-of and part-of (holonymy and meronymy for nouns) hierarchies.
In example, tree is a kind of plant, tree is hyponym of plant and plant is hypernym of
tree. Analogously from trunk is a part of tree we have that trunk is meronym of tree and
tree is holonym of trunk. The relations of WordNet 2.0 are presented on Table 7.

Figure 5 shows an example of nouns taxonomy.
WordNet matcher is a knowledge based matcher. It translates the relations provided

by WordNet to semantic relations according to the following rules:

• A ⊆ B if A is a hyponym, meronym or troponym of B;
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Figure 5: An example of WordNet nouns taxonomy

• A ⊇ B if A is a hypernym or holonym of B;

• A = B if they are connected by synonymy relation or they belong to one synset
(night and nighttime from above-mentioned example);

• A ⊥ B if they are connected by antonymy relation or they are the siblings in the
part of hierarchy.

Notice that hyponymy, meronymy, troponymy, hypernymy and holonymy relations are
transitive. Therefore, for example, from Figure 5 we can derive that Person⊆LivingThing.

If none of the above mentioned relations holds among the two input synsets Idk
relation is returned.

Table 8 illustrates WordNet matcher results.

Table 8: Semantic relations produced by WordNet matcher
Source label Target label Semantic relation

car minivan ⊒
car auto =
tail dog ⊑
red pink Idk
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8.6 Leacock Chodorow Matcher

The Leacock Chodorow matcher is a knowledge based matcher. It exploits Leacock
Chodorow semantic similarity measure. It returns ≡ if the measure exceeds the given
threshold and Idk otherwise. The measure is based on counting the number of links
between two input synsets. Intuitively, the shorter the path, the more related are the
concepts under consideration. Leacock and Chodorow[13] considered the noun is a hier-
archy. They proposed the following formula for estimating the similarity of two synsets:

simlc(c1, c2) = − ln

(

spath (c1, c2)

2 ·D

)

(3)

where spath(s1, s2) is the length of the shortest path between the two synsets c1 and c2

and D is the depth of the tree.
The measure has a lower bound of 0 and upper bound Ub = − ln(1/(2 ·maxDepth)),

where maxDepth is a maximum depth of the taxonomy.
Table 9 illustrates Leacock Chodorow matcher results with 3.0 threshold.

Table 9: Semantic relations produced by Leacock Chodorow matcher
Source synset Target synset Semantic relation

autograph signature =
actor actress =
dog cat Idk
sky atmosphere Idk

8.7 Resnik Matcher

The Resnik matcher is a knowledge based matcher. It exploits Resnik semantic similarity
measure. It returns ≡ if the measure exceeds the given threshold and Idk otherwise. This
measure is based on the concept of information content [20]. Information content defines
the generality or specificity of a concept in a certain topic.

Information content of the given concept is calculated as follows. Firstly the frequency1

of concept occurrences FC in text corpus is calculated. Then the frequencies of all sub-
suming concepts are calculated and added to FC . Thus the root concept will count the
occurrences of all the concepts in its taxonomy. In the case of WordNet synsets the fre-
quency counts are precomputed for wide range of large scale corpora. In our preliminary
experiments we exploited Brown corpus of standard American English [12].

Information content of a concept c is defined as:

IC(c) = − ln

(

freq(c)

freq(root)

)

(4)

1Here and throughout the paper, following NL tradition, we treat frequency as count (i.e., frequency
of concept occurrences is a number of times the given concept occurs in the corpora).
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where freq(c) and freq(root) are, respectively, the frequencies of the concept c and the
root of the taxonomy. Note that the fraction represents the probability of occurrence of
the concept in a large corpus.

Resnik defines the semantic similarity of the two concepts as the amount of information
they share in common. To be more precise, the amount of information two concepts share
in common is equal to the value of information content of their lowest common subsumer,
that is the lowest node in the taxonomy that subsumes both concepts. For example the
lowest common subsumer of cat and dog is carnivore. Therefore Resnik measure is defined
as:

simres(c1, c2) = IC (lcs (c1, c2)) (5)

where IC is the information content of a concept and lcs(c1, c2) is the lowest common
subsumer of concepts c1 and c2.

This measure has a lower bound of 0 and no upper bound.
Table 10 illustrates Resnik matcher results with 10.0 threshold.

Table 10: Semantic relations produced by Resnik matcher
Source synset Target synset Semantic relation

robot android =
actor actress Idk
dog cat Idk

8.8 Jiang Conrath Matcher

The Jiang Conrath matcher is a knowledge based matcher. It exploits the Jiang Conrath
semantic similarity measure. It returns ≡ if the measure exceeds the given threshold and
Idk otherwise. This measure [11] incorporates both information content of the concepts
and the information content of their lowest common subsumer. Originally Jiang Conrath
defined the distance between two concepts as:

distancejc(c1, c2) = IC(c1) + IC(c2)− 2 · IC (lcs (c1, c2)) (6)

where IC is the information content of a concept and lcs finds the lowest common sub-
sumer of two given concepts.

Therefore the similarity of two concepts can be represented as

simjc(c1, c2) =
1

distancejc(c1, c2)
(7)

The formula has two special cases:

• In the first case all information content values are 0:

IC(c1) = IC(c2) = IC (lcs (c1, c2)) = 0 (8)

This happens when both concepts and their lowest common subsumer are either the
root node or have a frequency count of 0. In both cases 0 similarity is returned.
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• The second case is when

IC(c1) + IC(c2) = 2 · IC (lcs (c1, c2)) (9)

which usually happens when

IC(c1) = IC(c2) = IC (lcs (c1, c2)) (10)

In this case c1 and c2 are the same concept and so we would like to return a maximum
value of relatedness.

This measure has a lower bound of 0 and the upper bound Ub = 1
− ln((froot−1)/froot)

,
where froot is the frequency of the taxonomy root.

The pseudo code for the algorithm is presented below.

1 struct Synset

2 String ID;

3 String[] lemmas;

4 String gloss;

5 String[] relations;

6 float match( Synset synset1, Synset synset2 )

7 String shortestPathId = getShortestPath( synset1, synset2 );

8 Synset lcs = getLowCommonSubsumer( shortestPathId );

9 float ic_lcs = getInformationContent( lcs );

10 float ic_s1 = getInformationContent( synset1 );

11 float ic_s2 = getInformationContent( synset2 );

12 if ( ic_s1 == ic_s2 && ic_s1 == ic_lcs && ic_lcs == 0)

13 return 0;

14 if ( ic_s1 + ic_s2 == 2*ic_lcs )

15 return maxValue;

16 float distance = ic_s1 + ic_s2 - 2*ic_lcs;

17 return 1/distance;

where ID (line 2) is the unique identifier, lemmas (line 3) is the list of synonyms that
represent this synset, gloss (line 4) is the definition associated to that synset and rela-
tions (line 5) is a list of pointers to other synsets connected to this by a WordNet relation.
maxValue (line 12) is the upper bound.

Firstly the shortest path between two synsets is computed (line 7). Then the lowest
common subsumer of the input synsets is obtained (line 8). The information content
values are computed for both synsets and lowest common subsumer in lines 6-8. Finally
after handling the special cases (lines 12-15) the distance (line 16) and similarity (line
17) are computed.

Table 11 illustrates Jiang Conrath matcher results with 1.0 threshold.

8.9 Lin Matcher

The Lin matcher is a knowledge based matcher. It exploits Lin semantic similarity mea-
sure. It returns ≡ if the measure exceeds the given threshold and Idk otherwise. This
measure is also based on information content[14]. It is defined as follows:

simlin(c1, c2) =
2 · IC (lcs (c1, c2))

IC(c1) + IC(c2)
(11)
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Table 11: Semantic relations produced by Jiang Conrath matcher
Source synset Target synset Semantic relation

trip hallucination =
actor actress =
dog cat Idk

In the case of IC(c1) = 0 and IC(c2) = 0 0 similarity is returned.
Table 12 illustrates Lin matcher results with 0.9 threshold.

Table 12: Semantic relations produced by Lin matcher
Source synset Target synset Semantic relation

robot android Idk
actor actress =
dog cat Idk

8.10 Hirst-St.Onge Matcher

The Hirst-St.Onge matcher is a knowledge based matcher. It exploits Hirst-St.Onge
semantic similarity measure. It returns ≡ if the measure exceeds the given threshold and
Idk otherwise. This measure in contrast to information content based measures is not
restricted to noun hierarchies.

Hirst and St.Onge [10] classified links in WordNet in 3 different categories:

• Upward (e.g. hypernym);

• Downward (e.g. holonym);

• Horizontal (e.g. antonym);

According to them two words are connected by a strong relation if:

• they both belong to the same synset;

• they belong to synsets connected by a horizontal link;

• one is a compound word, the second one is substring of the first while their synsets
are connected by an is a relation;

For strongly related words relatedness is computed as 2 ·C, where C is a constant used in
the formula for medium-strong relations. Its value is 8, so the coefficient is equal to 16.

A medium-strong relation exists if the two synsets are connected by a valid path in
WordNet. A path is considered valid if it is not longer than 5 links and conforms to
one of the eight predefined patterns. The relatedness between two words connected by
a medium-strong relation corresponds to the weight of the path which is given by the
following formula:

Weight = C − Pathlength− k · Changesindirection (12)
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where C and k are constants and, in our case, they are assumed to equal 8 and 1 re-
spectively. The pseudocode below illustrates the algorithm. In order to compute the
relatedness of two concepts first the type of relation holding between them is determined
(line 2). Then the given relation is compared with existing patterns (line 4).

1 float match( Synset synset1, Synset synset2 )

2 if ( checkStrongRelationship( synset1, synset2 ))

3 return 2*C;

4 int weight = getMedStrongWeight( 0, 0, 0, synset1, synset2 );

5 return weight;

checkStrongRelationship (line 2) takes in input the two synsets and returns true if
they fulfil one of the requirements of Strong relations and false otherwise.
getMedStrongWeight (line 4) takes in input two synsets and three zero values, that are
respectively defined as state, distance and chdir, and returns the weight as stated in
the above formula. Basically it searches recursively for a path from synset1 to synset2,
taking trace of the distance, changes in direction (chdir) so far and giving the state
value for the next call. There are 8 possible states (from 0 to 7) in which the function may
find itself, every state defines the rules the path has to follow. In particular, they specify
the categories of links used in the last iteration, the ones that are allowed in the current
step and the ones to use as next, taking into account the possible changes in direction.

This measure has a lower bound of 0 and an upper bound of 16.
Table 13 illustrates Hirst-St.Onge matcher results with 4.0 threshold.

Table 13: Semantic relations produced by Hirst-St.Onge matcher
Source synset Target synset Semantic relation

school private school =
actor actress =
dog cat Idk
sky atmosphere Idk

8.11 Context Vectors Matcher

The Context Vectors Matcher is a knowledge based matcher. It exploits context vectors
semantic similarity measure. It returns ≡ if the measure exceeds the given threshold and
Idk otherwise. This measure is based on context vector notion introduced by Schütze in
[22]. Originally exploited for word sense disambiguation, context vectors were adapted
for semantic similarity computation exploiting WordNet in [19].

The context vectors computation process starts from the selection of the highly topical
words which will define the dimensions of our word space. For our experiments we used
WordNet glosses as a corpus. We stemmed all the words in the glosses and filtered out
the function words. Then we counted the frequencies of the words in the corpus. Then
we cut off the words with frequencies lower then 5 and higher then 1000. This allowed us
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to keep the most informative words. We also added a tf-idf 2 cutoff with an upper bound
of 1500. This allowed us to perform additional filtering of the frequent words. Further we
will call the remaining words content words.

Afterwards we have created word vectors for all content words w as follows:

1. Initialise a vector ~w to zero

2. Find every occurrence of w in WordNet glosses

3. For each occurrence, search that gloss for words in the word space and increment
the dimensions of ~w that correspond to those words.

The basic idea here is to have a matrix of word vectors, where every row corresponds to
a word in the content words list and every column corresponds to the respective frequencies
of each word in the word space.

The final step is to calculate gloss vectors for every synset in WordNet, which is done
by adding the word vectors for each content word in the gloss. For example, if we want
the gloss vector of clock we have to consider its gloss: a timepiece that shows the time of
day and add the word vectors of timepiece, shows, time and day. Notice that this is a
simplified example because for our experiments we use extended glosses, thus we had to
take into account the glosses of every concept connected to clock by a WordNet relation.

As soon as gloss vectors are calculated they are stored in database and the prepro-
cessing phase is finished.

Semantic similarity of two synsets is defined as follows

simcv(c1, c2) = cos(angle(~v1, ~v2)) (13)

where c1 and c2 are the concepts, ~v1 and ~v2 are the respective gloss vectors and angle is the
angle between vectors. This formula can be rewritten using vector products, it becomes:

simcv(c1, c2) =
~v1 · ~v2

|v1| |v2|
(14)

where at the denominator we have the magnitude3 of the two vectors. It is a dot product4

between two normalised vectors.
Figure 6 illustrates context vectors similarity in 2 dimensional space.
The pseudo code of context vector semantic similarity computation algorithm is as

follows:

1 float match( Synset synset1, Synset synset2 )

2 int glossVec1[] = loadGlossVector( synset1 );

3 int glossVec2[] = loadGlossVector( synset2 );

4 float normVec1[] = normalizeVec( glossVec1 );

5 float normVec1[] = normalizeVec( glossVec1 );

6 return dotProduct( normVec1, normVec2 );

2tf-idf is a weight used to evaluate how important a word is to a document (or gloss in our case).
The formula we used is tfidf = tf · ln (idf); where tf is the frequency of occurrence of the word and
idf = nr.documents

docFrequency
. For our experiments nr.documents is the number of glosses and docFrequency is the

number of glosses in which our word appears.
3the magnitude of vector ~v is equal to

√

∑n

i=1
v2

i
4the dot product between vector ~v and vector ~w is ~v · ~w =

∑n

i=1
viwi
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Figure 6: An example of a 2-dimensional space for Word and Gloss vectors for ”cat -
feline mammal usually having thick soft fur and being unable to roar” synset

loadGlossVector (line 2-3) loads, from database, the precomputed gloss vector for the
given synset.
normalizeVec (line 4-5) calculates the normalised form of the given vector.
dotProduct (line 6) return the dot product between two given vectors.

The measure has a lower bound of 0 and an upper bound of 1.
Table 14 illustrates context vectors matcher results with 0.3 threshold.

Table 14: Semantic relations produced by context vectors matcher
Source synset Target synset Semantic relation

autograph signature =
actor actress =
robot android =
fruit glass Idk

8.12 WordNet gloss

WordNet gloss is a gloss based matcher. It compares the labels of the first input sense
with the WordNet gloss of the second. First, it extracts the labels of the first input sense
from WordNet. Then, it computes the number of their occurrences in the second gloss.
If this number exceeds a given threshold, ⊑ is returned. Otherwise, Idk is produced.

The reason why the less general relation is returned comes from the lexical structure
of the WordNet gloss. Very often the meaning of the index words is explained through a
specification of the more general concept. In the following example, hound (any of several
breeds of dog used for hunting, typically having large drooping ears) is described through
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the specification of the more general concept dog. In this example hound is a dog with
special properties (large drooping ears, used for hunting).

Counting the label occurrences in the gloss does not give a strong evidence of what
relation holds between concepts. For example, WordNet gloss returns the less general
relation for hound and ear in the above mentioned example, which is clearly wrong.

Table 15 illustrates WordNet gloss matcher results.

Table 15: Semantic relations produced by WordNet gloss matcher
Source synset Target synset Semantic relation

hound dog ⊑
hound ear ⊑
dog car Idk

8.13 WordNet extended gloss

WordNet extended gloss is a gloss based matcher. It compares the labels of the first input
sense with the extended gloss of the second. This extended gloss is obtained from the input
sense descendants (ancestors) descriptions in the is-a (part-of) WordNet hierarchy. A
given threshold determines the maximum allowed distance between these descriptions and
the input sense in the WordNet hierarchy. By default, only direct descendants (ancestors)
are considered. The idea of using extended gloss originates from [2]. Unlike [2], we do
not calculate the extended gloss overlaps measure, but count the number of first input
sense labels occurrences in the extended gloss of the second input sense. If this number
exceeds a given threshold, a semantic relation is produced. Otherwise, Idk is returned.
The type of relation produced depends on the glosses we use to build the extended gloss.
If the extended gloss is built from descendant (ancestor) glosses, then the ⊒ ( ⊑) relation
is produced. For example, the relation holding between the words dog and breed can be
easily found by this matcher. These concepts are not related in WordNet, but the word
breed occurs very often in the dog descendant glosses.

Table 16 illustrates WordNet extended gloss matcher results.

Table 16: Semantic relations produced by WordNet extended gloss matcher
Source synset Target synset Semantic relation

dog breed ⊒
wheel machinery ⊑
dog cat Idk

8.14 Gloss comparison

Gloss comparison is a gloss based matcher. Within the matcher the number of the same
words occurring in the two input glosses increases the similarity value. The equivalence
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relation is returned if the resulting similarity value exceeds a given threshold. Idk is
produced otherwise.

Let us try to find the relation holding, for example, between Afghan hound and Maltese
dog using gloss comparison strategy. These two concepts are breeds of dog, but unfortu-
nately WordNet does not have explicit relation between them. However, the glosses of
both concepts are very similar. Let us compare:

Maltese dog is a breed of toy dogs having a long straight silky white coat.
And:
Afghan hound is a tall graceful breed of hound with a long silky coat; native to the

Near East.
There are 4 shared words in both glosses (breed, long, silky, coat). Hence, the two

concepts are taken to be equivalent. Table 17 illustrates gloss comparison matcher results.
Several modifications of this matcher exist. One can assign a higher weight to the phrases

Table 17: Semantic relations produced by gloss comparison matcher
Source synset Target synset Semantic relation
Afghan hound Maltese dog =

dog cat Idk

or particular parts of speech than single words [18]. In the current implementation we
have exploited the approach used in [18], but changed the output to be a semantic relation.

8.15 Extended Gloss comparison

Extended gloss comparison is a gloss based matcher. It compares two extended glosses
built from the input senses. Thus, if the first gloss has a lot of words in common with
descendant glosses of the second then the first sense is more general than the second and
vice versa. If the corpuses (extended glosses) formed from descendant (ancestor) glosses
of both labels have a lot of words in common (this value is controlled by a given threshold)
then the equivalence relation is returned. For example, dog and cat are not connected by
any relation in WordNet. Comparing the corpuses obtained from descendants glosses of
both concepts we can find a lot of words in common (breed, coat, etc). Thus, we can infer
that dog and cat are related (they are both pets), and return the equivalence relation.
The relations produced by the matcher are summarised in Table 18.

Table 18: Semantic relations produced by extended gloss comparison matcher
Source synset Target synset Semantic relation

house animal Idk
dog cat =

8.16 Semantic Gloss comparison

Semantic Gloss comparison is a gloss based matcher. The key idea is to maintain statistics
not only for the same words in the input senses glosses (like in Gloss comparison) but
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also for words which are connected through is-a (part-of) relationships in WordNet. This
can help finding the gloss relevance not only at the syntactic but also at the semantic
level. In Semantic Gloss Comparison we consider synonyms, less general and more general
concepts which (hopefully) lead to better results.

In the first step the glosses of both senses are obtained. Then, they are compared by
checking which relations hold in WordNet between the words of both glosses. If there is
a sufficient number of synonyms (in the current implementation this value is controlled
by a threshold), the equivalence relation is returned. In the case of a large amount of
more (less) general words, the output is ⊒ (⊑ ) correspondingly. Idk is returned if we
have a nearly equal amount of more and less general words in the glosses or there are no
relations between words in glosses. Table 19 contains the results produced by semantic
gloss comparison matcher.

Table 19: Semantic relations produced by extended gloss comparison matcher
Source synset Target synset Semantic relation

dog breed ⊒
dog cat Idk

wheel machinery ⊑

8.17 MatchMiner

It is an approximated knowledge-based element level matcher which uses the growing
amount of online available semantic data which makes up the Semantic Web as a source
of background knowledge in ontology mapping. The core idea of our method is that, given
two terms, an appropriate mapping will be discovered by inspecting how these terms are
related in online available ontologies (the concepts in online ontologies that are equivalent
to the terms to be mapped are referred to as “anchor terms” following the terminology
introduced by [1]). The mappings that are obtained can be considered approximate in
the following ways:

Choose approximate anchor terms. When finding anchor terms, it is often difficult
to find online ontologies that define exactly the same concepts as those that we wish
to map. In case of failure to find exact anchor terms, we try to find terms that are
syntactic or semantic approximations of the terms to be mapped (as described in
Section 8.17.1).

Discover both exact and semantically approximate mappings. Our technique can
discover both equivalence relations between the two terms and a variety of semantic
approximations (⊑,⊒,⊥). We present this mechanism in Sections 8.17.2 and 8.17.3.

Approximate the correct mapping depending on available resources. In the con-
text of our technique, one can argue that the correct mapping between two terms
has been found only at a point when all online ontologies have been inspected and a
conclusion has been drawn by considering all existing evidence. This, however, is of-
ten unfeasible as the response time of a mapping algorithm is a resource that should
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be optimised. We are working on phrasing our algorithms as anytime algorithms
which can produce some useful results quickly by inspecting only a few ontologies
and then provide increasingly correct approximations of the truth as more time is
available.

Implementation Details. We explore our idea by implementing different mapping
strategies on top of the Swoogle’05 ontology search engine [4]. Swoogle crawls and indexes
a large amount of semantic metadata available online and as such allows access to a large
part of the Semantic Web.

Notations. Each strategy takes two candidate concept names (A and B) as an input
and returns the discovered mapping between them. The corresponding concepts in the
selected ontology are A’ and B’ (“anchor terms”). We rely on the description logic syntax
for semantic relations occurring between concepts in an ontology,e.g., A’ ⊑ B’ means that
A’ is a sub-concept of B’ in a selected ontology. The returned mappings are expressed

using C-OWL [3] like notations, e.g., A
⊑
−→ B means that A is a sub-concept of B.

8.17.1 Choosing approximate anchor terms

In order to discover more ontologies that cover the candidate concepts, the process of
finding anchor terms must be more flexible. This flexibility can be achieved by considering
the following techniques:

A. String normalisation. Differences between concept names can be based on sim-
ple differences in naming conventions (e.g., TURKEY BREAST and TurkeyBreast).
Most mapping mechanisms use string normalisation techniques [5], that consist in trans-
forming strings into a standard form (low case letter, using a particular character for
spaces and separators) before comparison. Our ontology selection relies on such mecha-
nisms as well.

B. Dealing with compound names. Compound names are particularly difficult
to match as they are likely to appear under slightly different forms. Several mapping
techniques suggest to be more flexible when searching for compound terms and to allow
for:

Different order of the constituents. For example, the term TurkeyRoast does not
appear in Swoogle, but RoastTurkey does.

Additional constituents. For example, TurkeyBreast is not covered but
TurkeyMeatBreast (which additionally contains Meat) is.

Less constituents. Some compound terms are only partially covered. For example,
MeatProduct does not exist in Swoogle, but Meat does.

Such a flexible matching is also used when discovering anchor terms in the work of
Aleksovski et al. [1]. However, while the examples given above are semantically equiva-
lent, automatically identifying lexically different but semantically equivalent compound
terms is a difficult task.

B. Exploiting semantic relations between terms. Semantic relations such as
synonymy can be used to replace terms with their semantic equivalents. A good source for
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(a) (b)

Figure 7: Using ontologies as background knowledge for semantic mapping: (a) discover-
ing mappings within one ontology (b) discovering cross-ontology mappings.

synonymy information is WordNet, especially for simple terms. However, the drawbacks
of WordNet are that it is difficult to get relevant synonyms unless the sense of the term
is known a priory and that compound terms are weakly covered.

8.17.2 Mappings Based on One Ontology

Our simplest strategy consists in using Swoogle to find ontologies containing concepts
equivalent to the candidate concepts and to derive mappings from their relationship in
the selected ontologies. Figure 7(b) illustrates this strategy with an example where three
ontologies are discovered containing the concepts A’ and B’ with the same names as A and
B. The first ontology contains no relation between the anchor concepts, while the other
two ontologies contain a subsumption relation.

The concrete steps of this strategy are:

1. Select ontologies containing concepts A’ and B’ corresponding to A and B;

2. For each resulting ontology:

• if A’ ≡ B’ then derive A
≡
−→ B;

• if A’ ⊑ B’ then derive A
⊑
−→ B;

• if A’ ⊒ B’ then derive A
⊒
−→ B;

• if A’⊥ B’ then derive A
⊥
−→ B;

3. If no ontology is found, no mapping is derived;

Even if this strategy seams simple, it leads to several implementation choices, depend-
ing on the relative importance given to time performance and accuracy of the mapping
mechanism:

Stop when the first mapping is found. In its simplest version, the algorithm
would stop as soon as a mapping is discovered. This is the easiest way to deal with
the multiple returned ontologies but it assumes that the first discovered relation can be
trusted and there is no need to inspect the other ontologies.

Dealing with contradictions. Instead of relying on the information provided by
only one ontology as before, we can envisage to combine the results obtained using all
the selected ontologies. Mappings resulting from different sources can be different (e.g.,

A
⊑
−→ B and A

⊒
−→ B), or, in the worst case, inconsistent (e.g., A

⊑
−→ B and A

⊥
−→ B).

Several ways of dealing with these contradictions can be considered: we can keep all
the mappings (favouring recall), only keep mappings without contradiction (favouring
precision), keep the mappings that are derived from most of the ontologies, or try to

combine the results (e.g., by deriving A
≡
−→ B from A

⊑
−→ B and A

⊒
−→ B). In any case,
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combining the results from several ontologies is more time consuming (but more reliable)
than deriving it from a single ontology.

Considering a particular level of inferences. In the simplest implementation,
we can rely on direct and declared relations between A’ and B’ in the selected ontology.
But, for better results, indirect and inferred relations should also be exploited (e.g., if
A’ ⊑ C and C⊥ B’, then A’⊥ B’). Different levels of inferences can be considered
(no inference, basic transitivity, DL reasoning), each of them representing a particular
compromise between the performance of mapping and the completeness of the result.

8.17.3 Cross-Ontology Mapping Discovery

The previous strategy assumes that a semantic relation between the candidate concepts
can be discovered in a single ontology. However, some relations could be distributed
over several ontologies. Therefore, if no ontology is found that relates both candidate
concepts, then the mappings should be derived from two (or more) ontologies. In this
strategy, mapping is a recursive task where two concepts can be mapped because the
concepts they relate in some ontologies are themselves mapped (Figure 7(c)):

1. If no ontologies are found that contain both A and B then select all ontologies
containing a concept A’ corresponding to A;

2. For each of the resulting ontologies:

(a) for each C such that A’ ⊑ C, search for mappings between C and B;

(b) for each C such that A’ ⊒ C, search for mappings between C and B;

(c) derive mappings using the following rules:

• (r1) if A’ ⊑ C and C
⊑
−→ B then A

⊑
−→ B

• (r2) if A’ ⊑ C and C
≡
−→ B then A

⊑
−→ B

• (r3) if A’ ⊑ C and C
⊥
−→ B then A

⊥
−→ B

• (r4) if A’ ⊒ C and C
⊒
−→ B then A

⊒
−→ B

• (r5) if A’ ⊒ C and C
≡
−→ B then A

⊒
−→ B

In this strategy, steps (a) and (b) can be run in parallel and stopped when one of
them is able to establish a mapping. These two steps correspond to the recursive part of
the algorithm. The task of searching for mappings between C and B can be realised using
either of our two strategies.

8.18 PowerMap

PowerMap [15] is a knowledge based semantic matcher which uses not only WordNet as
an oracle but the ontologies on the SW as a background knowledge. The PowerMap
algorithm is used for discovering and performing approximate mappings between multiple
available online heterogeneous ontologies on the Web, with no pre-determined assumption
about the source and the ontological structure of these data. The main differentiating
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features from other methods where mappings are required between two ontologies is that
in PowerMap the mapping process is driven by the task that has to be performed,
more concretely by the input query asked by the user. Indeed, in this method not all
the concepts of the ontology need to be interpreted; only ontology entities that seem
similar to the input query should be interpreted.Therefore, we are likely to discover several
candidate mappings drawn from different ontologies that may only have very few concepts
in common.

The mappings considered by PowerMap are exact and approximate mappings so a non-
relevant ontology with a potential relevant mapping is left out. PowerMap is a hybrid
matching algorithm comprising terminological/element and structural schema matching
techniques with the assistance of large scale ontological or lexical resources. At element
level an input query is represented by a keyword or set of keywords and syntactic and
semantic techniques can be used to obtain the ontology mappings. At structural level the
input query is represented by a triple or set of triples that indicated how the words are
related (in fact, better results are expected considering the triples than by only considering
isolated words), at structural level the meaningful mappings that better represents the
query domain are filtered by determining those ontologies that better cover the input
query triples and by studying the ontology relatedness to determine the valid semantic
interpretation (relation mapping techniques to match between the predicates of the triples
and relations in the identified ontologies are used)

PowerMap consists of three main phases. In order to optimise performance, the com-
plexity of these phases increases, hence the most time-consuming techniques are executed
last, when the search has been narrowed down to a smaller set of ontologies. However, in
the context of the Open Knowledge project PowerMap is used as at element level matcher
and therefore only the phase I and phase II (element level) are considered here. After
the execution of these two phases, each input keyword has associated a set of ontology
mappings (classes, instances, properties, or literals), where each mapping has a WordNet
synset, a semantic relation (exact, synonimia, hypernimia and hyponimia) and a numeric
score. Given this ontology background information for each keyword the semantic relation
that hold between each pair of input keywords (if any) can be obtained as seen in the
example subsection.

Phase I: Syntactic Mapping. The role of this phase is to identify candidate map-
pings and semantic relations for all query terms in different online ontologies (therefore
identify potentially relevant ontologies for that particular query). Recall is important so
that no relevant ontologies with potential entities to map are left out. To bridge the
gap between user and ontology terminology, partial or fuzzy mappings are needed to find
relevant hits and ontologies with potential mapping for any of the keywords in the input
query. This is the simplest phase as it only considers concept labels and local names (i.e.,
ignores the structure of ontologies). Approximate mappings rely on simple, string-based
comparison methods (e.g., edit distance metrics) and WordNet to look up lexically re-
lated words (synonyms, hypernyms and hyponyms), in case of nominal compounds, like
“educational organisation”, the main lemma of the compound is obtained as substituted
by a WN lexical related word, i.e. ”educational system”. However, not only WordNet
is used to find lexically related words for an input keyword, also information about the
superclasses and subclasses of the obtained ontology entity mappings is obtained (ontol-
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ogy background) to perform a second iteration of this phase to look up for hypernyms
and hyponyms and find new potentially relevant hits (relevant mappings) in other on-
tologies. Each mapping has associated information about it, like the semantic relation
(exact, synonym, hypernym, hyponym) and the score. To finalise, we envision a scenario
with thousand of KBs corresponding to hundred of ontologies. Therefore to efficiently
perform approximate searches on large-scale ontology repositories, Lucene is used to cre-
ate inverted indexes for the ontology elements (classes, instances, relations and literals),
and is used as our fast search engine, which also supports fuzzy searches based on the
Lavenshtein Distance, or Edit Distance algorithm.

Phase II: Semantic Mapping. This phase operates on the reduced set of ontologies
identified in the previous phase. The goal of this phase is to verify the syntactic mappings
identified previously and exclude those that do not make sense from a semantic perspec-
tive (e.g., the intended meaning of the query term differs from the intended meaning of
the concept that was proposed as a candidate match). PowerMap relies on WordNet
information and on the meaning of the mapped concepts in their hierarchy to verify that
the proposed mappings are also semantically sound. For example, if the term ”capital”
is matched to concepts with identical labels in a geographical ontology and a financial
ontology, these two meanings are not semantically equivalent. This phase relies on more
complex methods. First, it exploits the hierarchical structure of the candidate ontologies
to elicit the sense of the candidate concepts (in particular, the sense of an ontology class
is determined by the sense of its ascendant/descendant in the ontology). Second, it uses
WordNet based methods to compute the semantic similarity between the query terms and
the ontology classes, and between the candidate ontology classes themselves. Similarity
between them is measured by the distance (depth) and common subsumers between the
two concept/senses in the WordNet ”IS-A” taxonomy (as in hierarchy distance based
matchers). Additionally the WN glosses are also used.

Example in the context of the OK scenario -element level matcher.
Consider the following example, given two input keywords, e.g. “academics” and

“research fellow”. By using PowerMap techniques, the two inputs can separately map to
the following ontology entities with similar synsets:

Ontology mappings for “academics”:

1. “academic-staff-member” in ontology 1 (fuzzy/approximate searches)

2. “professor-in-academia” in ontology 3 (“professor” is a WN hyponym)

3. “researcher” in ontology 4 (“researcher” is a subclass of “academic-staff-member”
in ontology 1)

Ontology mappings for “research fellow”:

1. “research-fellow” in ontology 4 (fuzzy/approximate searches)

2. “post-doc” in ontology 1 (“post-doc” is a WN synonym)

Looking at the mappings for both keywords and at the ontology information, we can in-
fer that “academics” has a semantic relation with “research fellow” (research fellow ⊑
academics)because:
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1. In the ontology 1 “post-doc” (the ontology mapping for “research fellow”) is a
subclass of “academic-staff-member” (the ontology mapping for “academics”)

2. In the ontology 4 “research fellow” (the ontology mapping for “research fellow”) is
a subclass of “researcher” (the ontology mapping for “academics”)

The applied rules to obtain the semantic relations are the same that in the previous
algorithm based on Swoogle (section 1.3)

8.19 Community driven and Interaction specific Element Level

Matching

8.19.1 Introduction

In the previous sections interaction models are already introduced. these IMs are process
flow descriptions between roles. In Open-Knowledge, these roles are implemented by
services and run on hosts connected to the OK-network. Clearly, the research on web-
services is very related to this. In this section we come up with an approach where
mappings are added inside IMs, because it allows one to drop some assumptions that are
made in the traditional (semantic) web service domain.

Web-services are web-accessible software components, which are advertised and in-
voked via web-interfaces. Until now, invocation of these services is a time-intensive effort
because human programmers still need to understand what a webservice does before they
can use it. In other words, they need to know what the intended meaning is of the pro-
vided functionality offered by a service. Furthermore, they need to know the details of
the operational interface of the service before they can integrate the service with other
software.

The promise of the Semantic Web Service community is to reduce the human effort
that is involved in locating, combining and deploying web-services. The general idea is
to annotate with knowledge such that tasks like discovering, selecting and composing
web-services can be done automatically.

Two languages have been proposed for enriching web-service descriptions with such
semantic annotations: OWL-S and WSDL-S. An OWL-S description is divided into three
parts, specifying what a service does (the “profile”, used for advertising), how the service
works internally (the “process model”), and how to interoperate with the service via mes-
sages (the “grounding”). WSDL-S adds semantics to non-semantic WSDL descriptions
of services by allowing the annotation of WSDL data-types with pointers to a domain
ontology, and by annotating operations with preconditions and effects.

Semantic annotations of web-services are crucial to the Semantic Web services vision.
However, all these approaches make rather strong assumptions on the presence and nature
of these annotations:

• services are annoted with terms from an ontology: Currently, manual effort
is the only known method for providing semantic annotations of web-services. NLP
techniques, which have proved quite effective for automatic annotation of web-pages
are not capable of doing the same job for web-services given the small size of text-
fragments available for web-service descriptions. Some early research work is being
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done on automatically annotating web-services ([8, 21], but this technology is far
from deployable. Consequently, providing semantic annotations for web-services
will remain a costly effort for the foreseeable future. Hence, it is not obvious how
realistic it is to simply assume the existence of such annotations.

• these annotations cover the I/O types and the functionality

Even if these annotations are available, the Semantic Web Service vision assumes
that they adequately describe both the I/O types of the service and the functionality
of the service (= the relation between input- and output-parameters, plus possible
side-effects of executing the service). It is well known from software engineering that
in particular this final type of annotation (the functionality) is very hard to capture,
both informally and formally (as would be required for automated processing of the
service annotations).

• this ontology is shared between the communicating services (or: between
query and services) Even when annotations of I/O types and functionality have
been provided (possibly at great cost), the current approaches to locating services
require that these annotations have been done using a single semantic vocabulary, in
other words that they are taken from the same ontology. For example, the growing
body of work on composition-as-planning assumes the description of web-services
as plan-like operators, on which a planning algorithm can be run. But these algo-
rithms assume that the output-state of one operator can be linked to the input-state
of another. In practice, different providers of web-services will use different (and
sometimes even proprietary) ontologies for annotating their services. This requires
solving the ontology-mapping problem as part of the semantic web-service paradigm.
(This problem is widely recognised in the Semantic Web community at large, with
much work being done on ontology-mapping, but is not often acknowledged in work
on Semantic Web Services).

The only Semantic Web Services approach that explicitly acknowledges this problem
is WSMO, which introduces the notion of mediators (or bridges) between service
and requester (or between services). Such mediators are used to transform the goals
of the requester to the capabilities of the provider, and if needed, the mediators map
between different ontologies.

• this ontology is semantically rich enough to do inference Even when suf-
ficiently precise annotations have been provided using a uniform vocabulary (ie
assuming all the previous 3 issues have been solved), typical approaches to locating
semantic web services rely on subsumption reasoning for web-service location or
composition. However, it is well known from practical experience in the Semantic
Web area that most realistic ontologies are semantically very “lightweight”, and
do not provide a strict subsumption hierarchy that would support rich DL-style
reasoning.

In our work, we will provide an approach to locating web-services which will relax at
least the first 3 of the above 4 assumptions:
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• Web services only need to be described in non-semantic WSDL. We will use cheap
“anchoring”-techniques to link these services with available ontologies.

• The minimal assumption will be that I/O types are available as keywords (which
is trivially true through the availability of the non-semantic service description).
Optionally, the functionality-description may be available as free-text, from which
further anchorings may be computed.

• We will use ontology-mapping techniques to bridge between the different ontologies
that provide the anchors for the service descriptions.

• If a rich ontology is available, we will deploy subsumption reasoning for locating
services. In the (more likely) case that only very lightweight ontologies are available,
locating services will be limited to keyword-based retrieval in the extreme case.

In the next subsection, we give an informal description of an approach that should be
able to work with the relaxed assumptions that we mentioned before. After that we give
a short overview of related work on reasoning with background knowledge.

8.19.2 Learning mappings by example

In the introduction, we mentioned four unrealistic assumptions that are often, if not
always, made within the semantic web service domain. In our envisioned scenario, all
services are described as follows:

• Services are only described with strings (”terms”) Instead that the designer
of a webservice needs to express the functionality by finding or developing an ap-
propriate ontology, only a list of ’keywords’ needs to be given, to express the func-
tionality (i.e. ’what’ it does and which input and output types it handles). In this
way we drop the assumption that the descriptions are annotations with terms from
an ontology

• I/O types are described by primitive datatypes and keywords without
instance enumeration As already pointed in the previous bullet, the description
of the webservice is only by strings that are not bounded to any formal and/or
shared meaning. More specifically, the I/O types are described by keywords and the
instances of the types are not enumerated. In this paper we distinct two different
I/O types, namely contenttypes and datatypes. The first one gives a hint about
which thing the input or output represents like a ’cityname’ or ’processortype’. The
second type, the datatype, is for the machine that sends or receives this content.
Some examples are arrays, strings, numbers, dates, lists of strings etc. Given that
the amount of datatypes is reasonably small and that computers need to know
exactly what type of data is on the stream before they can parse it, we assume that
this set is fixed. The instances of the contenttypes need not to be enumerated (like
enumerating all possible cities for the type ’cityname’. In the next paragraph we
give an example on how we deal with unknown instances provided at runtime.)
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• Only primitive datatypes are shared, not the content types or instances
We assume that the primitive datatypes are known by all webservices, but not
the content types and instances. As we will show in the example, our approach
is based on coincidental occurrences of the terms via literal string matching with
terms appearing in ontologies. This means that we drop the assumption that if two
or more webservices communicate, they need to be annotated with terms from a
shared ontology.

• The terms in a description are not embedded in a structure on which to
do inference— Since the contenttypes are not annotated in any formal structure,
no automated reasoning is possible. For example, if one would know that a webser-
vice could find pictures of type ANIMAL, and the system ’knows’ that a DOG is an
ANIMAL, queries about dogs can be appropriately directed to the animal picture
service. As an alternative to this predetermined way of reasoning we will propose a
technique that discovers these kind of mappings via user-feedback.

To explain our approach, we first start with an example that exactly follows it. Imagine
one web-service that compiles a C source5 file into executable code for a specific CPU type,
and another web-service that executes code for a given CPU type:

CCompilerService

INPUT
DESCRIPTION compiles a C source file into a CPU dependent binary
CONTENTTYPE SOURCE CODE, CPU TYPE
DATATYPE FILE, STRING

OUTPUT
DESCRIPTION executable code together with the CPU type
CONTENTTYPE EXECUTABLE CODE, CPU TYPE
DATATYPE FILE, STRING

SoftwareExecutionService

INPUT
DESCRIPTION executable code together with the CPU type
CONTENTTYPE EXECUTABLE CODE, CPU TYPE
DATATYPE FILE, STRING

OUTPUT
DESCRIPTION status of execution
CONTENTTYPE LOG FILE
DATATYPE FILE

We can construct a simple process flow between two services, where the output of the
first is the input of the second. We can instantiate it by giving a piece of C source code
a 80386 processor type. The output of the first service will be the executable code in the
80386 instruction set. We assume that the second webservice can only execute code for

5C is a programming language
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the Pentium CPU types. Upon receipt of the request, service 2 has to decide whether
and how it can execute the code provided by service 1 for the given CPU type. Note that
service 2 does initially not know what a 80386 processor type is.

Exploiting the vast amount of information on the Internet, a mapping service perhaps
could find out an ontology containing a statement that relates the two instances 80386
and Pentium:

isBackwardsCompatibleWith(Pentium, 80386)6

Now, the user can be presented with the above statement and is asked to verify
whether ’80386’ can be replaced by ’Pentium’. If so, the system can subsume that the
’isBackwardsCompatibleWith’ relation in that ontology is applicable as a mapping rule
for the CPU TYPE field in this interaction. Note that the rule has no formal meaning
to the system, except that any X linked via the relation ’isBackwardsCompatibleWith’
Y in this ontology can be replaced by this Y. This rule does not apply for all contexts,
for example imagine a buying scenario, where you normally don’t want a 80386 when you
order a Pentium. Therefore, this rule should be associated only with the specific ontology
and process flow.

After this example, we give an informal description of the process of finding mapping
rules by example.

First we have to make the assumption that we have access to a large set of ontologies
that connect terms via a path of relations and terms that lie between them. We need
these ontologies to find for two terms a path which then will be added to an interaction
description between the services for which a mapping is needed (which we call a mapping
rule). Mappings are needed when the content type or instances of these types for the
output of one web-service, is not literally identical to the expected input of another web-
service. More precisely, we identify two situations when mappings are necessary:

• Content type matching at design time Imagine that a developer has a task in
mind that involves a process flow between several web-services. Assume that this
process-flow is written down in a machine executable form, which we call an inter-
action description. At the moment when an interaction description is constructed
between two web-services, the content-type of the output of service 1 may not be
identical to the input of a service 2.

• Content type instance matching at runtime During execution of the web-
service composition which is described by an interaction description, it may happen
that although for two web-service the content-types match but one service gets an
instance that it does not know of. For example, a service may have as ”CITY”
as input content type, and gets from another service ”Newyork” as an instance.
Given that we do not assume that we always have enumerations of instances in the
interaction description, this instance matching problem can occur at runtime.

For both the above described situations, we will include user feedback to retrieve the
content type matching and instance matching. This works as follows:

6the Pentium generation of CPUs is backward compatible with the 80386 instruction set, which means
that all code compiled for the 80386 can be executed on any Pentium processor.
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1. First we need a matching problem which, as said, can occur at design- or runtime.
A matching problem in our case means that a web-service receives a content-type
or an instance that it does not know of literally or via already existing matching
rules. Thus, imagine that x is such a content-type or instance.

2. Second, it makes a set of combinations C({x, y1}, {x, y2}, ...{x, yn}) where the set
{y1, y2, ..., yn} are the content types or instances that it normally would expect for
the given function call.

3. Third, for each pair (x, y) from the above step a search is applied on the ontologies
that are known to find a path path(x, y) between x and y. Later in this docu-
ment we formally describe the several possible path types that may be found and
the restrictions that we will make during the experiments. For now, we simply
assume that we found a direct relation r between x and y: r(x, y). For exam-
ple, imagine that x = 80836 and y = pentium that both occur in some ontology
O connected via the direct relation with the label ’isBackwardsCompatibleWith,
isBackwardsCompatibleWith(80836, pentium).

4. Fourth, some human in the process, for example the developer of the interaction
description or the invoker of the interaction receives the question:

”Would it be possible in this situation to replace ’80836’ by ’Pentium’? The reason
for this question is that I found a relation ’isBackwardsCompatibleWith’ between
them.” When the user approves, the relation will be added as a matching rule in
the interaction description O : isBackwardsCompatibleWith(80836, pentium).

5. Fifth, a confidence function that could be based on expiration dates and majority
votes, determines if in the next time the same question will be posted to a user
or if it assumes the mapping rule to be correct. One can decide that instead of
only replacing x and y by the mapping rule any term connected via the relation is
a correct replacement. In other words, the mapping rule can be generalized. For
example, image that the example ontology besides

isBackwardsCompatibleWith(80836, pentium)

also contains the relation

isBackwardsCompatibleWith(amd duron, amd athlon).

The mapping rule would, after generalizing over the parameters of the relation,
apply on mapping ’amd duron’ with ’amd athlon’.

Currently, we are working on formalizing these steps and come up with a realistic set
of interaction models to test the approach.

9 Further Work and Conclusions

9.1 Local Good Enough Answers

This document describes how semantic matching at the element level can be composed
to allow semantic matching at node and then tree level, and how these matchings can be
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enhanced to allow not merely exact matching but also approximate matching. However,
Section 6 illustrates that an approximate semantic tree matching can exist between trees
that are extremely dissimilar. In order for this approximate semantic tree matching to
be useful to us, we need to determine a notion of the quality of the matchings, which
will then allow us to determine which, of a set of possible matchings, is the ‘best’ match
(according to criteria which have to be defined) and whether this best match can be
considered ‘good enough’. These calculations produce what we call local good enough
answers: the score that is assigned by a peer to its map to a particular constraint. In
order to determine which peer should play a role in an IM, many of these local GEAs will
usually be necessary. Every peer that may potentially play the role must find and score
the best map to each constraint in the role, and these scores will be used to judge which
peer should be chosen for each role.

The next work to be done is therefore to determine how such scores can be calculated
and the criteria against which they are to be judged. The algorithms for approximate
semantic tree matching must be developed so that they are able to find scores for the
quality of matching at each node and then compose these scores in a manner that reflects
the structure of the tree. The score for each node is therefore a combination of the score
for the semantic match at that node (e.g., is it equivalence? is it subsumption - in which
case in what direction and to what degree?) with a weight reflecting the importance of
the node. The importance of the node is determined primarily by its position in the tree
but this value may be overridden by a user preference weighting: perhaps the position
of the node would indicate that it is not particularly important to the matching but it
represents an attribute that is particularly important to the user.

A key research issue for the next deliverable is how these weights will be determined:
to what extent do we penalise imperfect matches and how do we factor in the position of
the nodes in the tree. We believe that nodes at a higher level have a larger bearing on
the quality of the match than those at a lower level: for example, if the predicate names
have no match, the match should be judged to be of very low quality, since it is unlikely
that the predicates are referring to the same thing; however, if the predicate names have
a perfect match but one child has no match, this probably indicates a good match but
with a missing attribute. Therefore, the weight assigned to a node should depend on the
weight of its parent. However, it must be determined how these weights degrade: linearly;
quadratically; exponentially.

9.2 Global Good Enough Answers

Before an interaction can commence, an IM that matches the description provided by the
user must be chosen and the best peers must be chosen to play each of the roles, ensuring
that these best meet some ‘good enough’ standard. The process by which this is done is
referred to as global good enough answers. Potentially suitable IMs are chosen through
matching their descriptions (in natural language or keywords) against the description
entered by the user. We can then determine whether it is sensible to initiate them by
determining whether there are reliable peers who are able to perform the roles and, if so,
assigning the roles to them. There are two factors in deciding how well a peer can perform
a role. The first is the peer’s own feedback about how well it can satisfy the constraints
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of the role, which is a combination of the local GEA matching that peer has performed
on the role description. Secondly, since it is impossible to verify that the peer has given
this score honestly as the score can only be derived through access to the peer’s personal
ontology, and since we cannot be sure that the peer will honour the commitment and
not leave the interaction halfway through, or behave in some other irresponsible manner,
we must factor in information about the trust and reputation of the peer. This can be
gleaned from the history of interaction of the peer and will be discussed further in other
deliverables. These scores will be combined to give an overall idea of how likely the peer is
to perform the role well: for example, a peer with an excellent matching score but a very
low reputation is not likely to be believed; a peer with a lower score but a good reputation
would be preferred. If there are any roles in the interaction for which peers with a high
enough combined local GEA and reputation score cannot be found, the interaction cannot
commence.

Note that this matching process includes any peers that are acting on behalf of the
user: for example, a buying peer when the user wishes to buy something. The user’s
peer(s) must also perform local GEA matching to determine how well adapted the IM is
to their knowledge and of course a low score here will be likely to lead to the rejection of
the IM. If the user wishes to have some roles performed by its own peers, this will affect
the global GEA process. Other peers will not be considered for that role (for example,
it makes no sense for someone else’s buying peer to buy items even if that peer is able
and willing to do so: the items must be bought for the user). Additionally, trust and
reputation may not be a factor for a user’s peer: it is to be assumed that the user’s peer
will behave in a responsible manner in this situation.

9.3 Conclusions

This document forms the basis for the matching aspect of the OpenKnowledge system.
This process is of limited practical value until it has been enhanced by the good enough
answers aspect of the system. Ideas as to how this will be done have been presented in
this document, and further details of the process, together with preliminary results, will
be presented in deliverable 4.4.
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