
OpenKnowledge
FP6-027253

Implementation of the
Ontology Matching Component

Coordinator: Pavel Shvaiko1

with contributions from
Fausto Giunchiglia1, Mikalai Yatskevich1, Juan Pane1, and Paolo Besana2

1 Dept of Information and Communication Technology, University of Trento, Italy
2 School of Informatics, University of Edinburgh, UK

Report Version: final
Report Preparation Date: 14.12.2007
Classification: deliverable D3.6
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)

Partners: IIIA(CSIC) Barcelona
Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento



OpenKnowledge

FP6-027253

Implementation of the
ontology matching component 1

Coordinator: Pavel Shvaiko1

with contributions from
Fausto Giunchiglia1, Mikalai Yatskevich1, Juan Pane1, and Paolo Besana2

1 Department of Information and Communication Technology (DIT),
University of Trento, Povo, Trento, Italy

{pavel|fausto|yatskevi|pane}@dit.unitn.it
2 The University of Edinburgh, Edinburgh, UK

p.besana@ed.ac.uk

Report Version: �nal
Report Preparation Date: 14.12.2007
Classi�cation: deliverable 3.6
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)

Partners: IIIA(CSIC) Barcelona
Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento

1The originally planned title of this deliverable as from the project proposal was �Imple-
mentation of composite mapping engine�. However, this new title better re�ects the actual
implementation and needs of the project, and therefore, is used here.

1



Abstract

This deliverable provides a brief documentation for the ontology match-

ing component implementation. Speci�cally, it discusses (i) the purpose

and functionality of the component, (ii) its usage example, and �nally

(iii) plans for its future development.

1 Purpose and functionality

The purpose of the ontology matching component is to reduce the semantic het-
erogeneity in peer role descriptions [7, 2], formalized as lightweight coordination
calculus (LCC) constraints [5]. The heterogeneity is reduced in two steps: (i)
match the constraints to determine correspondences and (ii) execute correspon-
dences according to an application needs, such as query answering. In this deliv-
erable we focus only on the �rst, i.e., matching step, while the query answering
step is discussed in [6].

The ontology matching component takes LCC constraints and functionalities
in the OpenKnowledge components (OKCs) [1], for example, Get_Wine(Region,

Country, Color, Price) and Get_Wine(Region(Country, Area), Colour, Cost, Year), and
returns a global similarity coe�cient in the [0 1] range between these constraints
(e.g., 0.57) as well as the set of one-to-one correspondences between the semanti-
cally related elements of these constraints (e.g., that Color in the �rst description
corresponds to Colour in the second one). The following two structural proper-
ties are preserved: (i) functions are matched to functions and (ii) variables are
matched to variables.

2 Usage example

The following web site http://www.few.vu.nl/OK/wiki/ provides the Open-
Knowledge (OK) client installation guidelines, while the source code is available
at the project revision (subversion) control system - SVN: http://fountain.
ecs.soton.ac.uk/ok/repos2. Here we provide only a usage example for the on-
tology matching component, located at openK>src>org.openk.core>module>matcher
within the SVN project. The ontology matching component uses the S-Match
library (also available under SVN), speci�cally its label and node matchers [4].
Let us discuss a simpli�ed usage example, which is shown in Figure 1.

2Authorization required, contact David Dupplaw (dpd@ecs.soton.ac.uk) for an account set
up.

2



package org.openk.core.module.matcher.impl;

import java.util.Properties;

...

public class Example{

public static void main(String[] args) {

DefaultMatchingComponent mc = new DefaultMatchingComponent();

mc.init();

exampleLCC(mc);

}

public static void exampleLCC(DefaultMatchingComponent mc){

Properties p = new Properties();

p.put(Matcher.THRESHOLD_VALUE, "0.55");

matchLCC("get_wine(region, country, color, price, amount)",

"get_wine(region(country, area), colour, cost, year, quantity)",

mc, p);

}

public static void matchLCC(String source, String target,

DefaultMatchingComponent mc, Properties p){

TreeMapping tm = mc.treeMatch(null, source, target,

Matcher.STRUCTURE_TYPE.LCC_CONSTRAINT, p);

...

}

Figure 1: Usage example.

In particular, DefaultMatchingComponent implements the Matcher interface and
provides the basic functionality of the matching component. It converts the input
constraints into trees and performs the structure preserving semantic matching
as described in [3]. The Properties parameter contains the matcher speci�c infor-
mation, such as threshold values to use. THRESHOLD_VALUE speci�es an experi-
mentally established threshold (0.55) above which the constraints are considered
as globally similar and dissimilar otherwise. Get_Wine(Region, Country, Color, Price)

and Get_Wine(Region(Country, Area), Colour, Cost, Year) are the two constraints to
be matched by the matchLCC function.

The result of running this example is shown in Figure 2. Initially, the two input
constraints (SOURCE and TARGET) as well as the global similarity (SIM) between
them are reported. Then, the set of correspondences that hold between the ele-
ments of the input constraints is shown, starting from the root nodes. Statements
in curly brackets (e.g., {EQUIVALENT | 1.0}) express the relation holding between
the entities under consideration and the con�dence in the [0 1] range that this

3



relation holds. Numbers in square brackets (e.g., [0]) are used to index the ele-
ments of the constraints, which are further exploited during the query answering
phase, see [6].

SOURCE: get_wine(region, country, color, price)

TARGET: get_wine(region(country,area), colour, cost, year)

SIM: 0.5714285714285714

//get_wine <-> //get_wine {EQUIVALENT | 1.0}

/get_wine/region[0] <-> /get_wine/region[0]/area[1] {EQUIVALENT | 1.0}

/get_wine/country[1] <-> /get_wine/region[0]/country[0] {EQUIVALENT | 1.0}

/get_wine/color[2] <-> /get_wine/colour[1] {EQUIVALENT | 1.0}

/get_wine/price[3] <-> /get_wine/cost[2] {EQUIVALENT | 1.0}

Figure 2: The usage example result.

The execution of this example (on a standard laptop: 2Ghz, 2Gb RAM) took
1292 ms., out of which initialization of the matching component (mc.init) required
1077 ms., while the matching operation was performed in 41 ms.

3 Future work

Future work proceeds at least along the following directions: (i) making imple-
mentation of the ontology matching component robust and (ii) smooth integra-
tion of the component into the OK system.

References

[1] David Dupplaw, Uladzimir Kharkevich, Spyros Kotoulas, Adrian Perreau
de Pinninck, Ronny Siebes, and Chris Walton. OpenKnowledge Deliverable
2.1: Architecting Open Knowledge. http://www.cisa.informatics.ed.ac.
uk/OK/Deliverables/D2.1a.pdf, 2006.

[2] Fausto Giunchiglia, Fiona McNeill, Mikalai Yatskevich, Zharko Alekovski,
Alan Bundy, Frank van Harmelen, Spyros Kotoulas, Vanessa Lopez, Marta
Sabou, Ronny Siebes, and Annette ten Tejie. OpenKnowledge Deliverable
4.1: Approximate Semantic Tree Matching in OpenKnowledge. http://www.
cisa.informatics.ed.ac.uk/OK/Deliverables/D4.1.pdf, 2006.

[3] Fausto Giunchiglia, Mikalai Yatskevich, and Fiona McNeill. Structure pre-
serving semantic matching. In Proceedings of the ISWC+ASWC International
workshop on Ontology Matching (OM), pages 13�24, Busan (KR), 2007.

4



[4] Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Semantic match-
ing: Algorithms and implementation. Journal on Data Semantics, IX:1�38,
2007.

[5] Sindhu Joseph, Adrian Perreau de Pinninck, Dave Robertson, Carles
Sierra, and Chris Walton. OpenKnowledge Deliverable 1.1: Interaction
Model Language De�nition. http://www.cisa.informatics.ed.ac.uk/OK/
Deliverables/D1.1.pdf, 2006.

[6] Pavel Shvaiko, Fausto Giunchiglia, Juan Pane, and Paolo Besana. Open-
Knowledge Deliverable 4.3: Plug-in component supporting query answer-
ing. http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D4.3.

pdf, 2007.

[7] Mikalai Yatskevich, Fausto Giunchiglia, Fiona McNeill, and Pavel Shvaiko.
OpenKnowledge Deliverable 3.4: Speci�cation of ontology matching compo-
nent. http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D3.4.

pdf, 2007.

5


