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Abstract This document provides a technical speci�cation of the Open-
Knowledge (OK) ontology Matching Component (MC). In particular, it
discusses: (i) the MC logical architecture along with its constituent parts,
(ii) the MC external interface to the other components of the OK system,
and �nally (iii) the MC physical architecture.

1 Introduction

The OpenKnowledge system is a peer-to-peer network of knowledge or service
providers. Each computer in the network is a peer which can o�er services to
other peers. OK is viewed as an infrastructure, where we only provide some
core services which are shared by all the peers, while all kinds of application
services are to be plugged on top of it. These plug-in applications are called
the OK Components (OKCs). Notice that the OKCs link services to the OK
infrastructure and may not actually contain the services themselves.

Interaction between OKCs is a very important part of the architecture. By
using the Lightweight Coordination Calculus (LCC) [13], developers are able
to de�ne the Interaction Models (IMs) that specify the protocol that must be
followed in order to o�er or use a service. OKCs are the ones in charge of playing
the IM roles. Since there is no a priori semantic agreement (other than the
IM), the ontology matching component is used to automatically make semantic
commitments between the interacting parts.

The goal of this deliverable is to provide technical speci�cation of the on-
tology matching component of the OK system. MC is designed to solve the
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current contents of the deliverable and needs of the project, and therefore, is used
here.



semantic heterogeneity problem on the various stages of the OK interaction life-
cycle. Speci�cally, in this document we focus on matching: (i) keywords in the
IM annotations, (ii) terms in the role descriptions, and (iii) contents of the mes-
sages. In order to solve these particular matching problems we propose to exploit
an architecture which is based on three major categories of matchers. These are
label, node, and structure preserving matchers. Finally, we provide technical ac-
count of MC, by discussing its external interface to the other components of the
OK system as well as its physical architecture.

The rest of the deliverable is structured as follows. Section 2 presents the
lifecycle of interaction within the OK system. Section 3 describes the logical
architecture of MC. Section 4 presents an external interface to MC as well as
the data model for its constituent parts. Section 5 discusses the MC physical
architecture. Finally, Section 6 summarizes the major �ndings of the deliverable.

2 Lifecycle of interaction

The OpenKnowledge system is designed to allow peers to search on a network
for IMs that describe the interaction which they wish to initiate and to locate
other peers to play the necessary roles in the interaction (with the initiating
peer usually playing at least one role). Neither the IM nor the other peers need
to be known beforehand, though this can be the case if desired. The matching
algorithms described in the OK Deliverable 4.1 [6] facilitate the automatic in-
terpretation of these IMs so that the initiating peer can determine whether the
IM is really appropriate for its needs and peers potentially suitable for playing
other roles can determine how they are able to ful�ll the roles and whether the
consequences of that role are compatible with their goals. The lifecycle of an
interaction can be described in �ve steps as follows:

Step 1. The initiating peer must �rst locate an appropriate IM that results
in the goals it wishes to satisfy. This IM can either be already known to
it or can be found via the discovery component. A discovery component,
using lightweight matching techniques, such as keyword matching, returns
IMs satisfying the request. The description of a discovery component is out
of scope of this deliverable (see the OK Deliverable 2.2 [15] for details). Once
these potentially suitable IMs have been located, semantic matching is used
to determine if they are appropriate for the task at hand.

Step 2. The discovery component (discussed in Step 1) will �nd potentially
suitable peers through matching the role description in the IM with the
descriptions that peers give to their capabilities.

Step 3. Potentially suitable peers are contacted and, if they are available and
willing, will be sent a copy of the IM.

Step 4. Each peer will perform semantic matching to interpret the requirements
and e�ects of the interaction. If they are happy with the consequences of the
role and are able to ful�ll the constraints, they will return this information.

Step 5. The suitable peers are ranked according to the trust values associ-
ated with them, and, in the advanced case of approximate matching, their



matching scores. This trust value may come from the results of previous in-
teractions with the peers and is out of scope of this deliverable (see [14] for
details). The highest ranked peers are approached to play the roles in the
IM.

3 The ontology matching component

The ontology matching component solves the semantic heterogeneity problem
among di�erent knowledge representation formalisms. This component o�ers
match routines which produce correspondences between the labels, nodes of the
graph-like structures and the LCC constraints [13]. This functionality is exploited
by the OK system (in particular, by the Control Manager component) in at least
three di�erent phases:

� Keyword matching deals with the semantic heterogeneity in the IM descrip-
tions, i.e., with matching keywords in the IM description and user query.

� Term matching deals with the structural heterogeneity in a role descrip-
tion. For example, with matching of methods: get_address(Full_Name) and
get_address(Name, Surname).

� Query/Answer matching deals with the semantic heterogeneity arising from
the statement of a query and the values returned in its answers. For example,
the matching of needed for interaction module operation get_address(Stephen

Salter) and the operation get_address(Salter, Stephen) that a particular peer
can actually perform.

The ontology matching component is composed of the matchers of three
kinds, namely:

� Structure preserving matchers are intended to match the LCC constraints
or �rst order terms. Thus, for example, �nding that journal(publication) =
magazine(publication). They are employed in the peer recruiting process.

� Node matchers are intended to match the elements of the LCC constraints
in the particular context. Thus, for example, �nding that car 6= automobile, if
car is actually part-of train. Their results are further exploited by structure
preserving matchers.

� Label (element level) matchers are intended to match the labels in the IM
annotations, role elements and message contents. Thus, for example, �nd-
ing that car = automobile. Their results are further exploited in interaction
model selection and message content matching processes and reused by node
matchers.

Figure 1 shows the logical architecture of the matching component. Solid
lines stand for control �ow. Small three rectangles stand for an external to the
ontology matching component parts of the OK system, while everything inside
the large rectangle represents the ontology matching component.



Figure 1. The MC logical architecture.

3.1 Element level matchers

Element level matchers are organized in a library. Currently, the library contains
18 matchers. Let us discuss these in some detail, by describing mostly their inputs
and outputs, see [6,8,3,4] for more details.

Pre�x is a string-based matcher. It checks whether one input label starts with
the other one and returns the equivalence relation in this case.

Su�x is a string-based matcher. It checks whether one input label ends with
the other one and returns the equivalence relation in this case.

Edit distance is a string-based matcher. It calculates the edit distance measure
between two labels [17]. The calculation includes counting the number of the
simple editing operations, such as delete, insert and replace needed to convert
one label into another one and dividing the obtained number of operations
withmax(length(label1),length(label2)). If the value exceeds a given threshold
the equivalence relation is returned.

NGram is a string-based matcher. It counts the number of the same ngrams
(i.e., sequences of n characters) in the input labels. If the value exceeds a
given threshold the equivalence relation is returned.

WordNet matcher is a knowledge-based matcher. It translates the relations
provided by a lexical database WordNet [19,5] to semantic relations accord-
ing to the rules described in detail in the OK Deliverable 4.1 [6] and in [10].

Leacock Chodorow matcher is a knowledge-based matcher. It exploits Lea-
cock Chodorow semantic similarity measure [16]. It returns equivalence if
the measure exceeds a given threshold.

Resnik matcher is a knowledge-based matcher. It exploits Resnik semantic sim-
ilarity measure [21]. It returns equivalence if the measure exceeds a given
threshold.



Jiang Conrath matcher is a knowledge-based matcher. It exploits Jiang Con-
rath semantic similarity measure [12]. It returns equivalence if the measure
exceeds a given threshold.

Lin matcher is a knowledge-based matcher. It exploits Lin semantic similarity
measure [18]. It returns equivalence if the measure exceeds a given threshold.

Hirst-St.Onge matcher is a knowledge-based matcher. It exploits Hirst-St.Onge
semantic similarity measure [11]. It returns equivalence if the measure ex-
ceeds a given threshold.

Context vectors matcher is a knowledge-based matcher. It exploits context
vectors semantic similarity measure [20]. It returns equivalence if the measure
exceeds a given threshold.

WordNet gloss is a gloss-based matcher [8,7]. It compares the labels of the
�rst input sense with the WordNet gloss of the second one. Speci�cally, it
extracts the labels of the �rst input sense from WordNet. Then, it computes
the number of their occurrences in the gloss of the second input sense. If this
number exceeds a given threshold, the less general relation is returned.

WordNet extended gloss is a gloss-based matcher [8,7]. It compares the la-
bels of the �rst input sense with the extended gloss of the second one. This
extended gloss is obtained from the input sense descendants (or ancestors)
descriptions in the is-a (or part-of ) WordNet hierarchy. A threshold deter-
mines the maximum allowed distance between these descriptions. The type
of relation produced depends on the glosses we use to build the extended
gloss. If the extended gloss is built from descendant (or ancestor) glosses,
then the more general (or less general) relation is produced.

Gloss comparison is a gloss-based matcher [8,7]. Within the matcher the num-
ber of the same words occurring in the two input glosses increases the sim-
ilarity value. The equivalence relation is returned if the resulting similarity
value exceeds a given threshold.

Extended gloss comparison is a gloss-based matcher [8,7]. It compares two
extended glosses built from the input senses. Thus, if the �rst gloss has a
number of words in common with descendant glosses of the second one (this
is controlled by a threshold) then the �rst sense is more general than the
second one or vice versa. If the corpuses (extended glosses) formed from
descendant (or ancestor) glosses of both labels have a number of words in
common then the equivalence relation is returned.

Semantic gloss comparison is a gloss-based matcher [8]. The key idea is to
maintain statistics not only for the same words in the input glosses of the
senses (like in the Gloss comparison matcher) but also for words which are
connected through is-a and part-of relationships in WordNet. In semantic
gloss comparison we consider synonyms, less general and more general con-
cepts which may lead to better results.

MatchMiner is an approximate knowledge-based matcher. It uses the Semantic
Web as a source of background knowledge in ontology matching. The core
idea of this method is that, given two terms, an appropriate correspondence
will be discovered by inspecting how these terms are related in ontologies
available online.



PowerMap is an approximate knowledge-based matcher. It uses the ontologies
on the Semantic Web as a background knowledge. The main di�erentiating
features from other methods is that in PowerMap the matching process is
driven by the task that has to be performed, more concretely by the input
query asked by the user.

3.2 Node matchers

Currently, the node matchers library contains the only node matcher of the S-
Match system [10]. S-Match determines the semantic relations holding among
the nodes of the tree-like structures (e.g., classi�cations) by analyzing the mean-
ing (concepts, not labels), which is codi�ed in the elements and the structures
of the input models. In particular, labels at nodes, written in natural language,
are translated into propositional formulas which explicitly codify the labels in-
tended meaning. This allows for a translation of the matching problem into a
propositional validity problem, which is then e�ciently resolved using (sound
and complete) state of the art propositional satis�ability deciders.

3.3 Structure preserving matchers

Currently, the structure preserving matchers library contains 2 matchers [9]:

Exact structure preserving matcher is intended to match the trees with
identical structures.

Approximate structure preserving matcher exploits the theory of abstrac-
tion as theoretical foundation and a tree edit distance algorithm for similarity
computation between trees.

4 External interface

The ontology matching component o�ers the following interface to the other
components of the OK system.

public interface Matcher {

// Matching methods

public MappingElement[] match (MappingElement[] previous, String

source, String target, Properties settings);

public MappingElement[] match (MappingElement[] previous, Object

source, Object target, STRUCTURE_TYPE type, Properties settings);

}



We call the former routine the string match routine and the latter, the object

match routine. These routines provide a uni�ed way to deal with di�erent types
of heterogeneity. The string match routine takes two strings (source and target), au-
tomatically recognizes implicitly described structures inside them, and produces
the semantic relations between these structures as encoded within the mapping
elements (MappingElement[]). These represent the matching result.

A mapping element (ME) is a 5-tuple 〈IDij , Ni, Nj , R, C〉, where IDij is a
unique identi�er of the given mapping element; Ni is the i-th object of the source
structure; Nj is the j-th object of the target structure; R speci�es a semantic
relation (within, more or less general, equivalence and disjointness relations)
which may hold between the concepts at nodes Ni and Nj ; C is a similarity
coe�cient between 0 and 1 that stands for the plausibility of ME.

The object match routine takes source and target structures as Objects and the
type of these Objects as the type parameter. Currently supported values of the type
parameter are summarized in Table 1. For example, if the type parameter is set
to LCC_CONSTRAINT, the matching component expects two tree representations
of the LCC constraints as input parameters. The object match routine produces
an array of MEs between the Objects of source and target structures.

Type name Description

STRING Parameters are interpreted as java strings
to be matched by a label matcher.

LCC_CONSTRAINT Parameters are interpreted as tree
representations of the LCC constraints or
as classes implementing the ITreeAccessor
interface (see Figure 2 for more details).

PREPROCESED_TREE_AS_A_STRING Parameters are interpreted
as trees with linguistic preprocessing
information attached; serialized into a
XML string in the CTXML format [2].

Table 1. Types supported by the object match routine.

In the case that the given structures have already been partially matched
(i.e., there is a subarray of MEs), both routines may reuse this information by
exploiting the previous parameter in the routines de�nition in order to produce
the rest of mapping elements faster.

Finally, the settings parameter contains the matcher speci�c properties to be
passed to a particular matcher or a matching component as a whole.

Notice that the label, node and tree matchers have to implement the Matcher

interface in order to be plugged into the OK system. Since the matching compo-
nent itself implements the Matcher interface this allows the combination of the
results of various matchers in a composite fashion.



Figure 2. Class diagram of the OK matching component tree model.

Figure 2 provides a class diagram [1] of the tree model adapted by the OK
matching component. The speci�c tree model is necessary since di�erent node
and tree matchers may store the trees they operate with, exploiting various im-
plementations of the tree data structure. In order to guarantee the uniform access
to various tree implementations, the ITreeAccessor interface is de�ned. Speci�-
cally, it provides the basic functionalities for managing trees. AbstractTreeAccessor
provides the basic implementation of ITreeAccessor. The matcher developers are
expected to provide their own implementations of ITreeAccessor. The implementa-
tions may however inherit AbstractTreeAccessor and reuse the basic functionalities
implemented in it.

Below, we provide description of the methods of the ITreeAccessor interface:

� boolean contains(ITreeNode node)

checks whether the given node is contained in the tree baked by ITreeAccessor;

� Set<ITreeNode> getAncestors(ITreeNode node)

returns ancestors of the given node;

� Set<ITreeNode> getDescendants (ITreeNode node)

returns descendants of the given node;

� Set<ITreeNode> getParents(ITreeNode node)

returns parents of the given node;

� Set<ITreeNode> getChildren (ITreeNode node))

returns children of the given node;

� ITreeNode getRoot()

returns root of the tree;

� ITreeNode getMostRecentCommonAncestor(ITreeNode node1, ITreeNode node2)

returns least common subsumer of the two given nodes;

� List<Object> getPostorderSequence()

returns postorder tree traversal;

� List<Object> getPreorderSequence()

returns preorder tree traversal.



The ITreeNode interface is de�ned to abstract matcher-speci�c tree node
implementations. It extends standard SWING javax.swing.tree.MutableTreeNode

interface. The basic implementation of ITreeNode, which is TreeNode, extends
javax.swing.tree.DefaultMutableTreeNode class (see also Figure 2). Its functionalities
may be inherited by the matcher-speci�c node implementations.

Below, we provide description of the ITreeNode interface methods:

� add(ITreeNode node1)

removes node1 from its parent and makes it a child of this tree node;
� ITreeNode getFirstChild()

returns the �rst child of the tree node;
� ITreeNode getLastChild()

returns the last child of the tree node;
� ITreeNode getChildAfter(ITreeNode node1)

returns the child of the tree node that goes after node1;
� ITreeNode getPreviousSibling()

returns previous (left) sibling of the node;
� ITreeNode getRoot()

returns the root of the tree;
� Object getUserObject()

returns a user object stored in the node;
� boolean isRoot()

checks whether the node is a root of the tree;
� Enumeration postorderEnumeration()

returns postorder traversal of the tree starting from the node;
� Enumeration preorderEnumeration()

returns preorder traversal of the tree starting from the node.

The ontology matching component works as an independent component and
does not exploit any functionalities from the other OK components.

5 Physical architecture

The matching component is assumed to be deployed on any peer in the network.
However, some peers, such as mobile terminals, may not have enough computa-
tional resources to perform the ontology matching operation. These peers may
ask the dedicated ontology matching services deployed within the network to
perform the ontology matching operation. Therefore, MC can be viewed as: (i)
an integral part of the OK infrastructure on any peer, (ii) a service available to
the other peers.

The UML deployment diagram [1] for the case (i) is depicted in Figure 3.
Here, the peers are deemed to solve the matching problems locally while com-
municating with each other.



Figure 3. MC as part of the OK infrastructure on every peer.

The UML deployment diagram for the case (ii) is shown in Figure 4.

Figure 4. MC as a service available for the other peers.

Peer1 in Figure 4 has committed some of its computational resources to serve
as a matching service provider. The peers who have not enough computational
power to perform the resource consuming matching process, such as mobile
terminals (Peer2 and Peer3), may request the matching service to perform the
matching tasks for them. In this case all computations are performed on match-



ing service provider and the results in terms of mapping elements are sent back
to the requesting peers.

6 Conclusions

This document has provided a technical speci�cation for the ontology match-
ing component of the OpenKnowledge system. The component is designed to
be easily extensible and exploits three categories of matchers: label, node, and
structure preserving matchers. The technologies exploited for concrete matcher
implementations are novel, especially those which concern the structure preserv-
ing matching. Through the �rst prototype we will be able to test these technolo-
gies in order to gain a better understanding of how they can �t together with
the core idea of satisfaction of the OK system end-user requests.
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