
OpenKnowledge

FP6-027253

Ontology Handling Framework

Marco Schorlemmer1

with input from
Manuel Atencia1, Alan Bundy2, Fausto Giunchiglia3,

Vanessa Lopez4, and Fiona McNeill2

1 Artificial Intelligence Research Institute, IIIA-CSIC, Spain
2 School of Informatics, University of Edinburgh, UK

3 Dept of Information and Communication Technology, University of Trento, Italy
4 Knowledge Media Institute, The Open University, UK

Report Version: final
Report Preparation Date:
Classification: deliverable D3.2
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)

Partners: IIIA(CSIC) Barcelona
Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento



OpenKnowledge Deliverable D3.2

A Formal Conceptual Framework for Semantic

Matching, Alignment, and Refinement

in P2P Information Systems∗

Marco Schorlemmer1

with input from
Manuel Atencia,1 Alan Bundy,2 Fausto Giunchiglia,3

Vanessa López,4 and Fiona McNeill2

1IIIA - Artificial Intelligence Research Institute, CSIC, Spain
2School of Informatics, The University of Edinburgh, UK

3Dept. of Information and Communication Technology, University of Trento, Italy
4Knowledge Media Insitute, Open University, UK

Abstract

We specify a formal conceptual framework in which to characterise
semantic matching and alignment. Our aim with this framework is three-
fold: (a) to provide concrete definitions of the concepts at work; (b) to
describe, in a unifying manner, various different ontology matching ap-
proaches —at least those feeding into the OpenKnowledge project; and
(c) to be useful for pinning down several formal issues arising in semantic
matching and alignment in the context of P2P information systems, such
as composition of semantic alignments, dynamic ontology refinement, and
semantic-alignment interaction models.

1 Introduction

In order for two systems (databases, agents, peers, components, etc.) to be
considered semantically integrated, both will have need to commit to a shared
conceptualisation of the application domain. Commonly, this is achieved by
providing an explicit specification of this conceptualisation —what has become
to be known as an ontology— and by defining each system’s local vocabulary in
terms of the ontology’s vocabulary. This sort of integration is dubbed “seman-
tic” precisely because it assumes that the ontology is some sort of structured

∗Original title as stated in the contract with the European Commission: “Specification of
a common framework for characterising contextual ontology and context mapping.”
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theory T —coming thus equipped with a precise semantics for the structure it
holds— and because each system’s local language Li is interpreted in T (e.g., in
the technical sense of a theory interpretation as defined in [End02], when T is
a theory in first-order logic). Semantic integration is therefore always relative
to the theory T into which local languages are interpreted. We shall call this
theory the reference theory of the integration.

The use of ontologies as reference theories for semantic integration, however,
is more in tune with a classical codification-centered knowledge management
tradition, as put forward by Corrêa da Silva and Agust́ı [CA03]. Such tradi-
tion comprises the efforts to define standard upper-level ontologies such as CyC
[Len95] and SUO1, or to establish public ontology repositories for specific do-
mains to favour knowledge reuse such as the Ontolingua server [FFR97]. Corrêa
da Silva and Agust́ı remark that “centralised ontologies [. . .] promise to bring
the control of the organisation back to what was possible under classical man-
agement techniques. The problem is that they may also bring back the rigidity
of agencies organised under the classical management tenets.”

Since ontologies are the result of an inter-subjective agreement among in-
dividuals about the same fragment of the objective world, they are also highly
context-dependent and hardly will result to be general-purpose, regardless of
how abstract and upper-level they might be. This is even more true in highly
distributed, open, and dynamic environments such as P2P information systems.
In these sort of environments it is more realistic to achieve certain levels of
semantic integration by matching vocabulary on the fly. This actually means
that semantic integration has to occur with respect to a theory that is not ex-
plicitly given a priori, but which one could infer from the matching process,
nevertheless. We shall call it the virtual reference theory.

In this deliverable we specify a formal conceptual framework in which to
characterise semantic matching and alignment. Our aim with this framework is
threefold: (a) to provide concrete definitions of the concepts at work (Section
2); (b) to describe, in a unifying manner, various different ontology matching
approaches —at least those feeding into the OpenKnowledge project (Section
3); and (c) to be useful for pinning down several formal issues arising in se-
mantic matching and alignment in the context of P2P information systems,
such as composition of semantic alignments, dynamic ontology refinement, and
semantic-alignment interaction models (Section 4).

2 The Framework: Basic Concepts and Defini-
tions

We shall be concerned with semantic integration understood as the integration
of two systems by virtue of the interpretation of their respective vocabularies
into a reference theory, expressible in some logical language.

By vocabulary we mean a set V of words and symbols used by a system to
represent and organise its local knowledge. In a formal, logic-based representa-
tion language the vocabulary is constituted by the non-logical symbols used to
form sentences and formulas (in this case it is usually referred to as parameters
or signature). The language is then the set L(V ) of all well-formed formulae over

1http://suo.ieee.org
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a given vocabulary V . We shall also write L when we do not want to explicitly
refer to the vocabulary. We call the elements of a language L, sentences.

In declarative representation languages, knowledge is represented and or-
ganised by means of theories. DL-based ontologies are such an example. A
convenient way to abstractly characterise theories in general is by means of the
notion of consequence relation. Given a language L, a consequence relation over
L is, in general, a binary relation ` on subsets of L which satisfying certain
structural properties.2 Consequence relations are also suitable to capture other
sorts of mathematical structures used to organise knowledge in a systematic
way, such as taxonomic hierarchies. When defined as a binary relation on L
(and not on subsets of L), for instance, it coincides with a partial order. Fur-
thermore, there exists a close relationship between consequence relations and
classification relations (which play a central role in ontological knowledge organ-
isation), which has been thoroughly studied from a mathematical perspective
in [DH01, BS97, GW99].

We call a theory a tuple T = 〈LT ,`T 〉, where `T⊆ P(LT ) × P(LT ) is a
consequence relation, hence capturing with this notion the formal structure
of an ontology in general. Finally, in order to capture the relationship between
theories, we call a theory interpretation a map between the underlying languages
of theories that respects consequence relations. That is, a function i : LT → LT ′

is a theory interpretation between theories T = 〈LT ,`T 〉 and T ′ = 〈LT ′ ,`T ′〉 if,
and only if, for all Γ,∆ ⊆ L we have that Γ `T ∆ implies i(Γ) `T ′ i(∆) (where
i(Γ) and i(∆) are the set of direct images of Γ and ∆ along i, respectively).3

2.1 Semantic Matching

We call semantic matching to the process that takes two theories T1 and T2 as
input (called local theories) and computes a third theory T1↔2 as output (called
bridge theory) that captures the semantic alignment of T1 and T2’s languages,
and which underlies the semantic integration of T1 and T2 with respect to a
reference theory T . It is important to make a couple of remarks here.

First, one usually distinguishes a theory from its presentation. If the lan-
guage L is infinite (as for instance in propositional or first-order languages,
where the set of well-formed formulae is infinite, despite of having a finite vo-
cabulary), any consequence relations over L will be infinite as well. Therefore,
one deals in practice with a finite subset of P(L)×P(L), called a presentation,
to stand for the smallest consequence relation containing this subset.

A presentation may be empty, in which case the smallest consequence rela-
tion over a language L containing it is called the trivial theory. We will write
Tr(L) for the trivial theory over L. It is easy to proof that, for all Γ,∆ ⊆ L,
Γ `Tr(L) ∆ if, and only if, Γ ∩∆ 6= ∅.

Rigorously speaking, a semantic matching process actually takes two pre-
sentations of local theories as input and computes a presentation of the bridge
theory as output. But, from a conceptual perspective, we shall characterise
semantic matching always in terms of the theories themselves.

2These are commonly those of Identity, Weakening and Global Cut (see [DH01, BS97]).
3Theories and theory interpretations as treated here can also be seen as particular cases

of the more general framework provided by institution theory, which has been thoroughly
studied in the field of algebraic software specification (see [GB92]).
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Second, the reference theory T is usually not an explicit input of the se-
mantic matching process (not even a presentation of it). Instead it should be
understood as the background knowledge used by a semantic matcher to infer
semantic relationships between the underlying vocabularies of the respective in-
put theories. For a manual matcher, for instance, the reference theory may be
entirely dependent on user input, while a fully automatic matcher would need
to rely on automatic services (either internal or external to the matcher) to infer
such reference theory. It is for this reason that we talk of a virtual reference
theory, since it is not explicitly provided to the semantic matcher, but is implicit
in the way external and internal sources are brought into the matching process
as background theory for semantic matching.

Next, we provide precise definitions of what we mean for a bridge theory
to capture a semantic alignment of languages, and also what we mean by a
semantic alignment underlying a semantic integration of local theories.

2.2 Integration Theory

Definition 1 Two theories T1 and T2 are semantically integrated with respect
to T , if there exist theory interpretations i1 : T1 → T and i2 : T2 → T .

T

T1

i1

??~~~~~~~
T2

i2

``@@@@@@@

We call I = {ii : Ti → T}i=1,2 the semantic integration of local theories T1 and
T2 with respect to reference theory T . Two languages L1 and L2 are semantically
integrated with respect to T if their respective trivial theories are.

In semantic matching we are interested in determining the semantic rela-
tionship between the languages LT1 and LT2 on which semantically integrated
theories T1 and T2 are expressed. Therefore, a semantic integration I of T1 and
T2 with respect to a reference theory T as defined above is not of direct use,
yet. What we would like to have is a theory TI over the combined language
LT1 ] LT2 (the disjoint union) expressing the semantic relationship that arises
by interpreting local theories in T . We call this the integration theory of I, and
it is defined as the inverse image of the reference theory T under the sum of the
theory interpretations in I. Following are the precise definitions.

Definition 2 Let i : T → T ′ be a theory interpretation. The inverse image
of T ′ under i, denoted i−1[T ′], is the theory over the language of T such that
Γ `i−1[T ′] ∆ if, and only if, i(Γ) `T ′ i(∆).

It is easy to proof that, for every theory interpretation i : T → T ′, T is a
subtheory of i−1[T ′], i.e., `T ⊆ `i−1[T ′].

Definition 3 Given theories T1 = 〈LT1 ,`T1〉 and T2 = 〈LT2 ,`T2〉, the sum
T1 + T2 of theories is the theory over the sum of language (i.e., the disjoint
union of languages) LT1 ] LT2 such that `T1+T2 is the smallest consequence
relation such that `T1 ⊆ `T1+T2 and `T1 ⊆ `T1+T2 .
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Given theory interpretations i1 : T1 → T and i2 : T2 → T , the sum i1 + i2 :
T1 + T2 → T of theory interpretations is just the sum of their underlying map
of languages.

Definition 4 Let I = {i1,2 : T1,2 → T} be a semantic integration of T1 and
T2 with respect to T . The integration theory TI of the semantic integration I
is the inverse image of T under the sum of interpretations i1 + i2, i.e. TI =
(i1 + i2)−1[T ].

The integration theory faithfully captures the semantic relationships between
sentences in LT1 and LT2 as determined by their respective interpretation into
T , but expressed as a theory over the combined language LT1 ]LT2 . The sum of
local theories T1 + T2 is therefore always a subtheory of the integration theory
TI , because it is through the interpretations in T where we get the semantic
relationship between languages. It captures and formalises the intuitive idea
that an integration is more than just the sum of its parts.

2.3 Semantic Alignment

In semantic matching one usually isolates as output to the matching process the
bit that makes TI genuinely a supertheory of T1+T2. The idea is to characterise
a theory T1↔2 over a the disjoint union of subsets L1 ⊆ LT1 and L2 ⊆ LT2 ,
called bridge theory, which, together with T1 and T2, uniquely determines the
integration theory TI . To keep everything characterised uniformly in the same
conceptual framework, the bridge theory, together with its relationship to the
local theories T1 and T2, can be expressed by a diagram of theory interpretations
as follows.

Definition 5 A semantic alignment A of T1 with T2 is a diagram

T1 T1↔2 T2

Tr(L1)

ccFFFFFFFFF

::uuuuuuuuu
Tr(L2)

ddIIIIIIIII

;;xxxxxxxxx

in the category of theories and theory interpretations, where Li ⊆ LTi
and T1↔2

is a theory whose underlying language LT1↔2 = L1 ] L2, and where all arrows
are theory inclusions. We shall also write T1

A←→ T2 as a shorthand of an
alignment.

We say that a semantic alignment A underlies a semantic integration I
when the colimit of A in the category of theories and theory interpretation
(which always exists) is the integration theory of I, i.e., colim(A) = TI .

Open Problem: Given a semantic integration I, which are the smallest sub-
sets L1 and L2, and which is the smallest bridge theory T1↔2 with L1 ] L2 as
its underlying language forming a semantic alignment of T1 with T2 such that
it underlies I?

5



2.4 Related Work

The original effort to develop an formal approach to ontology alignment us-
ing theory and theory interpretation around the issues of organising and relat-
ing ontologies is Kent’s Information Flow Framework (IFF) [Ken00]. Recently,
Kent has proposed a formal characterisation of semantic integration in terms
of IFF [Ken05]. Also recently, Goguen has shown that Kent’s approach can
be expressed in terms of institution theory [GB92], and he uses this insight to
provide foundations for principled semantic integration [Gog05].

The representation of an ontology alignment as a system of objects and
morphisms in a category, and of semantic integration by means of a colimit of
such a diagram, bears a close relationship to the notion of W-alignment diagram
described in [ZKEH06]. This is so because both notions share the same categor-
ical approach to semantic alignment. But, unlike in [ZKEH06], we specifically
further take the a dual “type-token” structure of semantic integration into ac-
count, and we define alignment with respect to this two-tier model. We claim
that in this way we better capture Barwise and Seligman’s basic insight that
that “information flow involves both types and their particulars” [BS97]. This
will become clearer when discussing the following examples.

3 Examples of Semantic Matching and Align-
ment

We have outlined a formal framework that characterises semantic matching in an
abstract way, namely as the process that, given two local theories T1 and T2 com-
putes a bridge theory T1↔2 that captures the semantic alignment of T1 and T2

underlying a semantic integration I of T1 and T2. According to this framework,
what conceptually distinguishes particular instances of semantic matching is the
integration I, which is basically (a) the virtual reference theory T with respect
to which semantic integration occurs, and (b) the theory interpretations i1 and
i2 capturing the way local vocabularies are interpreted in this reference theory.
Let us now illustrate these conceptual differences by describing several seman-
tic matching systems feeding into OpenKnowledge [AKtv06, GSY05, SK05] as
particular instances of our general conceptual framework outlined so far.

3.1 Matching Vocabularies by Anchoring to Web Ontolo-
gies

Input to the matching process described in [AKtv06] are two sets of terms V1

and V2, i.e., two semantically poor ontologies consisting only of unstructured
(flat) lists. In order to find semantic matches between elements of V1 with
elements of V2, the matching process attempts first to map elements of each Vi

to concepts occurring in a common background-knowledge ontology O as one
may found available on the web, and then use the rich semantic structure of such
ontology to infer the semantic relationship between elements of the vocabulary.
The first step of this process in called anchoring, and is typically done in a
computationally cheap fashion doing lexical matching (although in some cases
it is supplemented with expert assistance). During the anchoring step not all
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elements of Vi are usually mapped, and it yields n-m relationships between
elements of Vi and concepts in O.

In the second step of the process, namely when reasoning with the seman-
tically rich ontology O, one now is able to infer semantic relations such as
subsumption, equivalence, or overlap between elements of the initially unstruc-
tured vocabularies by virtue of them being anchored to concepts in O, which
yields much more matches than using lexical matching only. Thus, if a term
s1 ∈ V1 is mapped to a concept c in O (e.g. “Aorta thorcalis dissection” is
anchored to “Aorta”) which happens to be a subconcept of a concept d (e.g.,
“Artery”) to which a term s2 ∈ V2 is anchored (e.g., “Dissection of artery”),
then a relationship of the kind “is more specific than” can be inferred between
s1 (“Aorta thorcalis dissection”) and s2 (“Dissection of artery”).

Although [AKtv06] do not give precise descriptions of which kind of seman-
tic relationships are inferred, nor how they are inferred from the background
knowledge ontology, the process described above can still be seen as a particular
kind of semantic integration as formalised in Section 2. For that reason we shall
conceptualise source and target vocabularies and the background ontologies, as
well as anchoring, in terms of theories and their interpretations.

Take the local theories Tr(V ′
1) and Tr(V ′

2) to be the trivial theories over the
sub-vocabularies V ′

1 ⊆ V1 and V ′
2 ⊆ V2 for which each element can be anchored

to a background ontology O. Notice that here languages and vocabularies as
defined in Section 2 coincide. For the reference theory the obvious theory would
be to take the theory TO determined by O (see [KS03]). If O is just a taxonomy,
for instance, each sub-/super concept relation c ≤ d in O can be captured by
{c} ` {d} being a constraint in TO. Anchoring, however, may map a local term
in V ′

i to more than one concept in O, which makes it impossible to formalise
anchoring as theory interpretations from local theories Ti to TO. For that reason
we shall take the disjunctive power of TO to be the reference theory T = ∨TO,
defined as follows: Let TO = 〈LTO

,`TO
〉; ∨TO = 〈L∨TO

,`∨TO
〉 where L∨TO

=
P(LTO

), the powerset of LTO
, and for each Γ,∆ ⊆ L∨TO

, Γ `∨TO
∆ if and

only if, for all Y ⊆ LTO
such that Y ∩ X 6= ∅ for each X ∈ Γ, we have that

Y `TO

⋃
∆.

The following proposition states that anchoring, i.e., mapping elements from
each Vi to subsets of concepts of O are indeed theory interpretations.

Proposition 1 Anchoring are theory interpretations.

proof: Since anchoring is applied to a semantically poor ontology, namely just
a subset V ′

i of terms, which we have characterised by its trivial theory Tr(V ′
i ),

any function on V will trivially be a theory interpretation: Let ai : V ′
i →

P(LTO
) be the anchoring function. Γ `Tr(V ′

i ) ∆ iff Γ ∩ ∆ 6= ∅. Consequently,
ai(Γ) ∩ ai(∆) 6= ∅, and therefore ai(Γ) `∨TO

ai(∆). �

A direct consequence of the above proposition is the following corollary:

Corollary 1 I = {ai : Tr(V ′
i )→ ∨TO}i=1,2 is a semantic integration

The matching process described in [AKtv06] may indeed be seen in terms
of the integration theory of I. Actually, the formalisation of anchoring as a
semantic integration I allows us to precisely define the semantic relationships
inferred by the process that constitute the integration theory of I.
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Definition 6 Let I = {ai : Tr(V ′
i ) → ∨TO}i=1,2 be the the semantic integra-

tion defined above.

• We say that s1 ∈ V1 is more specific than s2 ∈ V2 iff {s1} `TI {s2}.
Consequently, s1 is more specific than s2 iff for each concept c ∈ O to
which s1 is anchored there exists a concept d ∈ O to which s2 is anchored
such that, c ≤ d in O.

• We say that s1 ∈ V1 is more general than s2 ∈ V2 iff {s2} `TI {s1}.
Consequently, s1 is more general than s2 iff for each concept d ∈ O to
which s2 is anchored there exists a concept c ∈ O to which s1 is anchored
such that, d ≤ c in O.

• We say that s1 ∈ V1 is equivalent to s2 ∈ V2 iff {s1} `TI {s2} and
{s2} `TI {s1}. Consequently, s1 is equivalent to s2 iff for each concept
c ∈ O to which s1 and for each concept d ∈ O to which s2 is anchored
such that, c ≡ d in O.

• We say that s1 ∈ V1 and s2 ∈ V2 overlap iff {s1, s2} 6`TI ∅. Consequently,
s1 and s2 overlap iff there exist a concept c ∈ O to which s1 is anchored
and a concept d ∈ O to which s2 is anchored such that, c and d overlap
in O.

3.2 Semantic Matching with S-Match

Input to S-Match [GSY05] are two labelled directed acyclic graphs G1 = (N1, E1, l1)
and G2 = (N2, E2, l2) with sets of nodes N1 and N2, sets of edges E1 ⊆ N1×N1

and E2 ⊆ N2 × N2, and labelling functions l1 : N1 → S1 and l2 : N2 → S2,
respectively, where S1 and S2 are sets of labels. These input graphs are to be un-
derstood as concept taxonomies, such that, given an edge (n, m), li(n) denotes a
subconcept of li(m). S-Match maps nodes of each graph Gi = (Ni, Ei, li), with
i = 1, 2, to formulae in Propositional Description Logic whose atomic concepts
are WordNet senses. First, each label s ∈ Si in graph Gi is mapped to a formula
fi(s) in Propositional Description Logic (called concept of label); second, each
node n ∈ Ni is mapped to a formula ii(n) in Propositional Description Logic
(called concept at node) defined as follows:

ii(n) =
l

m∈↑n

fi(li(m))

where ↑ n denotes the set of all nodes reachable from n (including itself). Finally,
formulas in Propositional Description Logic can be converted into an equivalent
formula in a propositional logic language with Boolean semantics.

Central to the way S-Match computes the semantic relationships between
nodes in N1 and nodes in N2 is the background knowledge brought into the
matcher. S-Match uses for this purpose a library of so called element-level
matchers (ranging from string-based matchers looking for shared prefixes, suf-
fixes, computing edit distances and the like, to sense-based matchers such as
those based on WordNet’s hyper-/hyponym and holo-/meronym structures),
which determine a set K of semantic relationships s R t between labels, with
s ∈ S1, t ∈ S2, and R ∈ {v,w,=,⊥}. S-Match’s final output is a collection of
semantic relationships n R m between nodes (called mapping elements), with
n ∈ N1, m ∈ N2, and R ∈ {v,w,=,⊥}, such that
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• n v m iff AK implies i1(n)→ i2(m) in propositional logic

• n w m iff AK implies i2(m)→ i1(n) in propositional logic

• n = m iff AK implies i1(n)↔ i2(m) in propositional logic

• n ⊥ m iff AK implies ¬(i1(n) ∧ i2(m)) in propositional logic

where AK is the set of propositional axioms determined by the background
knowledge K as follows:

• f1(s)→ f2(t) ∈ AK iff s v t

• f2(s)→ f1(t) ∈ AK iff s w t

• f1(s)↔ f2(t) ∈ AK iff s = t

• ¬(f1(s) ∧ f2(t)) ∈ AK iff s ⊥ t

The semantic relationships are computed and checked using a SAT prover. S-
match is run for any pair of nodes. Thus, to match two graphs of n and m
nodes respectively, S-match has to be executed n×m times, once for each pair
of nodes.

We show that S-Match is indeed a particular instance of our general semantic
matching framework. Conceptually, the axioms AK of the background knowl-
edge fed into S-Match’s SAT prover determine a consequence relation `AK

over
the propositional language LWordNet whose atomic propositions are WordNet
senses: let `AK

be the smallest Boolean consequence relation4 such that ∅ `AK

{ϕ} if, and only if, ϕ ∈ AK . Nodes of input graphs are mapped into sentences
of LWordNet, such that the output semantic relationship between two nodes is
determined by the way `AK

relates the sentences into which these nodes are
mapped. Consequently, an application of S-Match, with its library of element-
level matchers, determines a virtual reference theory T = 〈LWordNet,`AK

〉.
In addition, an application of S-Match also determines maps of languages

ii : Ni → LT . The way these maps are computed make them actual theory
interpretations, because S-Match takes the structure of the input graphs into
account for the computation of ii. Since graphs Gi = (Ni, Ei, li) are understood
as classification taxonomies, they can be characterised as theories Ti = 〈Ni,`Ei

〉, where `Ei
are the smallest consequence relations that include Ei. That is,

we take nodes as sentences of their languages, and edges as presentations of
their theories. The following proposition states that ii are indeed a theory
interpretations:

Proposition 2 Let Gi = (Ni, Ei, li) be a labelled directed acyclic graph, with
li : Ni → Si; let f : Si → LT be a function mapping labels to propositional
formulae in LT ; let Ti = 〈Ni,`Ei

〉 be the theory where `Ei
is the smallest

consequence relation including Ei; let T be a Boolean theory over LT .
The map ii : Ni → LT defined for all n ∈ Ni as

ii(n) =
∧

m∈↑n

fi(li(m))

4A Boolean consequence relation is a consequence relation that takes the Boolean structure
of sentences into account: For instance, if ` is Boolean, then s, t ` u and s, t ` v imply
s ` (t→ u ∧ v).
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is a theory interpretation ii : Ti → T .

proof: Suppose Γ `Ti
∆. It follows from the definition of `Ti

that there
exist n ∈ Γ and m ∈ ∆ such that m is reachable from n in Gi, i.e., m ∈↑ n.
Consequently, by the way ii is defined, ii(m) is a conjunct of ii(n). Therefore,
{ii(n)} `T {ii(m)}, and consequently ii(Γ) `T ii(∆). �

A direct consequence of the above proposition is the following corollary:

Corollary 2 I = {ii : Ti → T}i=1,2 is a semantic integration

Finally we need to proof that S-Match’s output indeed captures the integra-
tion theory of I:

Theorem 1 For all n ∈ N1 and for all m ∈ N2,

• n v m iff {n} `TI {m}

• n w m iff {m} `TI {n}

• n = m iff {n} `TI {m} and {m} `TI {n}

• n ⊥ m iff {n, m} `TI ∅

proof: n v m is a mapping element iff AK implies i1(n) → i2(m), where
AK is the set of propositional formulae axiomatising the background knowl-
edge K determined by S-Match’s element-level matchers. By the definition
of Boolean consequence relation `AK

of the integration’s reference theory, the
above implication is equivalent to state that {i1(n)} `AK

{i2(m)}. Finally,
{i1(n)} `AK

{i2(m)} iff {n} `TI {m}. The remaining equivalences are proved
analogously. �

3.3 Information-Flow-based Semantic Matching

Input to IF-Map [SK05] are two so called populated ontologies, which are par-
tially ordered sets O1 = (N1,≤) and O2 = (N2,≤) of concept names together
sets X1 and X2 of instances and classification relations C1 ⊆ X1 × N1 and
C2 ⊆ X2×N2 of instances to concept names. IF-Map’s output is a consequence
relation over the disjoint union N1]N2 of concept names capturing the semantic
relationship between concepts of one ontology with concepts of the other.

Central to the way semantic relationships are computed is the assumption
that an agent gets to know about the conceptualisation of another agent by
exchanging instances classified under the concept names of their respective lo-
cal populated ontology. Consequently, IF-Map’s semantic integration will be
partial, relative to the set of exchanged instances, and hence will be determined
both at the concept and at the instance level:

• An agent i will have attempted to explain a subset N ′
i of its concept names

to other agents, and

• another agent j will have exchanged with it a subset Yj ⊆ Xj of its
instances.

10



Central for semantic integration to occur is that agent i is capable of computing
a classification C ′

i ⊆ N ′
i × X ′

i, where X ′
i = Xi ∪ Yj , as this allows one to

define the classification C1↔2 ⊆ (Y1 ∪ Y2) × (N ′
1 ] N ′

2) of exchanged instances
to communicated concept names, which will determine the semantic integration
of the agent’s ontology theories. This semantic integration of sublanguages N ′

1

and N ′
2 is based on the fact that a classification C always determines a theory

Th(C) on the language of its concept names (see [BS97] for details).
As in the proof of Proposition 1, it is trivial to see that the inclusion functions

ii sending N ′
i into the disjoint union N ′

1 ] N ′
2 are theory interpretations from

Tr(N ′
i) to Th(C1↔2). Consequently we have:

Proposition 3 I = {ii : Tr(N ′
i)→ Th(C1↔2)} is a semantic integration.

Corollary 3 The reference theory of I is also its integration theory, i.e., TI =
Th(C1↔2).

A partial order of concept names Oi = (Ni,≤) can be characterised as a
theory Ti = 〈Ni,`Oi

〉, where `Oi
is the smallest consequence relation that

includes ≤. Consequently, The partial semantic integration I of subsets N ′
1 and

N ′
2, determines a semantic alignment of local theories T1 and T2 underlying the

input ontologies to IF-Map.

T1 Th(C1↔2) T2

Tr(N ′
1)

ccFFFFFFFFF

88rrrrrrrrrr
Tr(N ′

2)

ffLLLLLLLLLL

;;xxxxxxxxx

The colimit of this alignment determines a semantic integration of the on-
tologies that is the result of the partial semantic integration achieved by means
of communicating concept names and exchanging instance and classification
information.

3.4 Interpretation- vs. Classification-based Semantic Match-
ing

The above description of S-Match and IF-Map with respect to the conceptual
framework we have outlined illustrates that both are semantic matching tech-
niques that follow two alternative and complementary approaches to semantic
integration.

S-Match follows what we call an interpretation-based paradigm. Seman-
tic integration is achieved by virtue of how local terminology is interpreted in
a virtual reference theory that is implicit to how the matcher uses external or
internal sources. In S-Match it is a theory determined by the axioms in a propo-
sitional logic yielded by the consultation of a library of element-level matchers.
The local context is respected by the way the interpretation is done, namely by
respecting the local structure, captured as local theory. In this paradigm it is
assumed that the matching process is capable of computing this interpretations
in a reference theory.

IF-Map, on the contrary, follows a classification-based paradigm. Meaning
of local terminology is determined not by way of theory interpretations, but by
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how instances are locally classified to sentences of the local language. The vir-
tual reference theory is determined by the semantic alignment that arises from
the partial semantic integration through a theory generated by the shared clas-
sification system. In this paradigm it is assumed that local agents are capable
of classifying any new instance coming from foreign agents according to its own
terminology, and vice versa. Other classification-based semantic matchers are
[WG02, vBD+05].

4 Semantic Reconciliation in P2P Systems

In this section we explore three issues arising in semantic matching and align-
ment in open P2P systems, and attempt to put them in relationship with the
formal framework outlined above.

4.1 Composing Alignments

Central in query forwarding in a P2P system is the issue of successive trans-
lations of a query along different paths in a P2P network. Our aim in this
subsection is to formalise the idea of composition of semantic alignments in or-
der to pin down the problem that arises with successive query translation. For
this reason we first define the concept of translation with respect to a seman-
tic alignment. It follows the notion of translation of sentences in declarative
languages as formalised in [CN00]. In the following, let Ti be theories with
underlying languages Li, and let si be a sentence of language Li.

Definition 7 We say that s2 ∈ L2 is a partial translation of s1 ∈ L2 with
respect to semantic alignment A when {s1} `colim(A) {s2}.

We say that s2 ∈ L2 is a translation of s1 ∈ L2 with respect to semantic
alignment A when {s1} a`colim(A) {s2}.

We now use the above notion of translation to provide a definition of the
composition of semantic alignments.

Definition 8 We say that an alignment A of T1 with T3 is a composition of
the alignment A1 of T1 with T2 and the alignment A2 of T2 with T3 when the
following propositions are equivalent:

1. s3 ∈ L3 is a partial translation of s1 ∈ L1 with respect to A

2. there exists s2 ∈ L2 such that s3 ∈ L3 is a partial translation of s2 ∈ L2

with respect to A2 and s2 ∈ L2 is a partial translation of s1 ∈ L1 with
respect to A1.

Problem Statement

Let A1 be a semantic alignment of T1 with T2, underlying a semantic integration
I1; let A2 be a semantic alignment of T2 with T3, underlying a semantic inte-
gration I2; let A be a semantic alignment of T1 with T3, underlying a semantic
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integration I.
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AA
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>>}}}}}}}
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A
// T3

What are sufficient and/or necessary conditions on I, I1 and I2 for A to be a
composition of A1 and A2?

4.2 Dynamic Ontology Refinement

Unlike with the previously discussed systems, the Ontology Refinement System
(ORS) [McN06] does not match two ontologies by computing semantic relation-
ships between ontology elements, but actually refines one of the ontologies —the
ontology of a so called planning agent— in order to succeed in delegating a cer-
tain action to a foreign service-providing agent with slightly differing ontology.
In addition it does not look for a refinement on the whole ontology, but only
on the fragment whose mismatch caused the plan execution carried out by the
planning agent to fail. Refinement is hence tightly linked with the agent’s plan
execution, and is solved by applying changes to the agent’s ontology.

ORS is capable of diagnosing ontological mismatches that require the ap-
plication of refinements. These mismatches occur, for instance, when, for a
particular action α and in a particular situation s the service-providing agent
is incapable of performing α as expected by the planning agent. This happens
when, according to the planning agent’s ontology OPA, α’s precondition should
be satisfied in s but, according to the service-providing agent’s ontology OSPA.
α’s precondition is not satisfied in s. ORS refines OPA in a way that α’s precon-
dition in OSPA follows from OPA in situation s. Refinements consist of replacing
a predicate with another one that is above or below it in the predicate hierarchy
of the ontology, adding or substracting predicate arguments, and including or
removing rule preconditions, etc. These refinements change the theory or the
signature of the ontology, or both.

Semantic Integration Revisited

In a sense ORS aims at a semantic integration of two ontologies, but not
with respect to a reference theory, as in the previously discussed systems,
but with respect to a situation and for a particular action. An ontology is
a pair O = 〈sign(O), axs(O)〉, where sign(O) is a signature and axs(O) is the
set of axioms of O over signature sign(O). Taking Sen(sign(O)) to be the set
of all first-order sentences over sign(O), an ontology O determines a theory
TO = 〈Sen(sign(O)),`TO

〉, where `TO
is the smallest first-order consequence

relation such that ∅ `TO
{ϕ}, for all ϕ ∈ axs(O). Consequently, semantic inte-

gration of ontologies reduces to semantic integration of theories. We may, hence,
restate our definition of semantic integration given in Definition 1 as follows:

Definition 9 Two theories T1 and T2 are semantically integrated with respect
to a situation s and an action α, if the following propositions are equivalent:

1. α’s precondition in T2 follows from T1 in situation s
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2. α’s precondition in T1 follows from T2 in situation s

As with Definition 1, the definition above attempts to model the result of a
semantic integration, such as ontology matching or ontology refinement. In ORS
the latter is an asymmetric process, since only the planning agent’s ontology
OPA is refined. Consequently, Definition 9 above can be relaxed (and this is
how things actually work in ORS) by asking only for an implication 1. ⇒ 2. (or
else 2. ⇒ 1.). Still, it is very ORS-specific: it is stated in terms of situations
and actions as ORS performs semantic integration in the planning domain. It
remains an open problem to find a more task-independent definition of semantic
integration which still retains the core insight of semantic integration we get from
Definitions 1 and 9, namely that semantic integration occurs always relative to
some shared entity: a (virtual) reference theory on one hand, and particular
situations and actions on the other hand.

Semantic Refinement vs. Semantic Alignment

Since ORS does not align ontologies as defined in Definition 5, it also remains an
open problem to provide a faithful formalisation of ORS’s refinements in terms
of suitable mathematical objects. Still, we can provide a necessary condition
that we expect ORS refinements to satisfy, namely that a refinement renders
two theories to be semantically integrated for some situation and action:

Proposition 4 Given two theories T1 and T2, if T ′1 is a refinement of T1 for
T2, then there exist a situation s and an action α such that T ′1 and T2 are
semantically integrated with respect to s and α, while T1 and T2 are not.

Obviously, semantic integration is understood here in terms of Definition 9.

4.3 An Interaction Model for Semantic Alignment

By exchanging units of meaning coordination two agents may progressively align
their ontologies. For a practical application of the framework to ontology align-
ment in open, distributed environments, in this section we show how the frame-
work of Section 2 serves as a foundation for a general ontology-alignment inter-
action model. We shall first describe the process of meaning coordination from
an operational perspective, and then provide an executable specification of such
interaction model by using LCC [Rob04].

The strategy that each agent may follow in selecting appropriate units of
meaning coordinations will obviously influence the quality of the alignment that
one eventually gets. In the process of meaning coordination we describe next,
agents A1 and A2 alternate in exchanging units of meaning coordination (here-
after, UMC) in order to explain each other the meaning of local and foreign
types. This process gradually builds up an alignment and is based on the fol-
lowing coordination tactic: if an agent Ai wants to known the meaning of a
foreign concept, it asks agent Aj for an instance of this concept in order to clas-
sify this instance according to its own ontology; reciprocally, Ai may inform Aj

which concept he has selected for this particular instance. This dialogue may
be described schematically as follows:

Agent Ai wants to know the meaning of Oj-concept α:
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1. Aj selects a new instance a for Oj-concept α

2. Aj sends Ai the UMC “a is an instance of concept α”

3. Ai selects an Oi-concept β for instance a

4. Ai sends Aj the UMC “a is an instance of concept β”

At this point, both Ai and Aj may update the alignment A as defined in Section
2.3 because the dialogue above involves the exchange of two UMCs. Also, Aj

may take the new Oi-concept β as starting point for an analogous dialogue in
order to find out the meaning of this foreign concept:

Agent Aj wants to know the meaning of Oi-concept β:

1. Ai selects a new instance b for Oi-concept β

2. Ai sends Aj the UMC “b is an instance of concept β”

3. Aj selects an Oj-concept γ for token b

4. Aj sends Ai the UMC “b is an instance of concept γ”

Again, at this point, both Ai and Aj may update the alignment A as defined
in Section 2.3, because again the dialogue involves the exchange of two UMCs.
Notice that this second dialogue is identical to the first one, only with the roles
of agents Ai and Aj switched.

In the meaning coordination process described above we have been delib-
erately silent on how agents select instances and concepts for the UMCs they
need to exchange, and also at the stage at which the alignment process finishes
(e.g., because some good-enough alignment has been achieved). In an open,
distributed system the strategy followed by agents will surely depend on the
local decision-making machinery. Instead, we want to focus on the shared in-
teraction model that agents would need to follow to coordinate their ontologies,
independently of their particular decision-making strategies. For this, we need
to supply, in an executable language, the specification of the general process
of agent coordination that may yield (subject to the agents’ strategies) to an
alignment of ontologies, with the roles undertaken by the agents during that
process. In the remainder of this section we give a specification of the meaning
coordination described above in one such language, namely LCC [Rob04] (see
Figure 1 for a definition of LCC’s syntax).

Each of Clauses 1 to 3 defines the message-passing behaviour of a role in
the interaction. Clause 1 defines the message-passing behaviour of an agent
(identified by Ai) in the role of an aligner of ontologies. An agent in this role
initiates a dialogue with another agent in the same role with the objective of
building on top of an alignment An (which initially, for n = 0, may be empty)
through the exchange of UMCs.

When in the role of an aligner, agent Ai either may choose to wait for a
message from an agent Aj asking Ai to explain the meaning of a concept α, and
switching subsequently to the role of an explainer of α for agent Aj ; or else it
may choose to send a message to an agent Aj asking Aj to explain the meaning
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Interaction Model := {Clause, . . .}
Clause := Agent :: Dn

Agent := a(Role, Id)

Dn := Agent | Message | Dn then Dn | Dn or Dn | Dn par Dn | null← C

Message := M ⇒ Agent | M ⇒ Agent ← C | M ⇐ Agent | C ← M ⇐ Agent

C := Term | C ∧ C | C ∨ C

Role := Term

M := Term

Where null denotes an event which does not involve message passing; Term is a structured

term (e.g., a Prolog term) and Id is either a variable or a unique identifier for an agent.

Figure 1: Syntax of LCC interaction models

of a concept α, and switching subsequently to the role of an inquirer of α for
agent Aj .

a(aligner(An), Ai) ::„
ask(explain(α))⇐ a(aligner( ), Aj) then
a(explainer(An, α, Aj), Ai)

«
or„

ask(explain(α))⇒ a(aligner( ), Aj) then
a(inquirer(An, α, Aj), Ai)

« (1)

Clause 2 defines the message-passing behaviour of an agent (identified by
Ai) in the role of an explainer of a local concept α for agent Aj . An agent in
this role exchanges with its dual agent (the agent that switched to the inquirer
role when both initiated the dialogue in the aligner role) a pair of UMCs in
order to update its alignment An with the ontology of Aj .

When in the role of an explainer of a local concept α for agent Aj , an agent
Ai first sends a message to agent Aj (in the role of an inquirer) telling it that
a is an instance of α, conditioned to Ai being capable of selecting such instance
a for α. Next, it sends a new message to Aj asking it to classify a according
to Aj ’s ontology. Then it waits for a message from Aj telling Ai that a is an
instance of some foreign concept β. Ai then updates its current alignment An

according to the exchanged UMCs (that a is and instance of concept α and of
concept β), which yields the new alignment An+1. Finally, Ai may choose to
either continue the alignment with Aj , switching to the role of an inquirer of
foreign concept β for agent Aj , or else it may choose to exit the dialogue by
switching back to the initial aligner role with the updated alignment.

a(explainer(An, α, Aj), Ai) ::
tell(is instance of(a, α))⇒ a(inquirer( , , ), Aj) ← select instance(α, a) then
ask(classify(a))⇒ a(inquirer( , , ), Aj) then
tell(is instance of(a, β))⇐ a(inquirer( , , ), Aj) then
null← update(a, α, β,An,An+1) then
( a(inquirer(An+1, β, Aj), Ai) or a(aligner(An+1), Ai) )

(2)

That is, given two agents in the aligner role of an interaction, when one asks
the other for an explanation of a concept, the former will switch into the role of
an inquirer (the one sending out the message asking for the explanation), while
the latter will switch into the role of an explainer (the one getting the message).
Explainer and inquirer agents then enter a dialogue in which they subsequently
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exchange UMCs, until they decide (according to their local decision-making
machinery) to exit the dialogue, an fall back to the initial aligner role. While
in the explainer or inquirer role an agent will only pass messages with its dual
agent.

Clause 3 defines the message-passing behaviour of an agent (identified by
Ai) in the role of an of an inquirer of a foreign concept β for agent Aj . An
agent in this role exchanges with its dual agent (the agent that switched to the
explainer role when both initiated the dialogue in the aligner role) a pair of
UMCs in order to update its alignment An with the ontology of Aj .

When in the role of an inquirer of a foreign concept β for agent Aj , an agent
Ai first waits for a message of agent Aj (in the role of an explainer) telling
it that b, for example, is an instance of β, and subsequently waits again for a
new message from Aj that asks Ai to classify b according to Ai’s ontology. It
then sends a message to Aj telling it that b is an instance of local concept α,
conditioned to Ai being capable of selecting such concept α for which b is an
instance. Next, Ai updates its current alignment An according to the exchanged
UMCs that b is an instance of concept α and of concept β), which yields the
new alignment An+1. Finally, Ai may choose to either continue the alignment
with Aj , switching to the role of an explainer of local concept α for agent Aj ,
or else it may chose to exit the dialogue by switching back to the initial aligner
role with the updated alignment.

a(inquirer(An, β, Aj), Ai) ::
tell(is instance of(b, β)⇐ a(explainer( , , ), Aj) then
ask(classify(b))⇐ a(explainer( , , ), Aj) then
tell(is instance of(b, α)⇒ a(explainer( , , ), Aj) ← select concept(b, α) then
null← update(b, α, β,An,An+1) then
( a(explainer(An+1, α, Aj), Ai) or a(aligner(An+1), Ai) )

(3)

The three clauses above specify an executable interaction-model by which
two agents align their ontologies by exchanging UMCs. Being independent of
the classifying and decision-making machinery each agent might have, it offers
a general model of ontology-alignment to which different agents can subscribe
to.

5 Concluding Discussion

While research into ontology matching has produced increasingly complex al-
gorithms, most settings in which the matching problem was tackled was almost
always the same: given two ontologies, find all the possible mappings between
their entities attaching a confidence level to the mappings that are returned.
One of the challenges in the field of ontology matching now is not so much
perfecting these algorithms, but rather trying to adapt them to novel scenarios.
For instance, when integrating data from online ontologies it is often necessary
to map between several online ontologies. This is very unlike the traditional
scenario where only two ontologies were mapped at a time.

An example of mapping in such scenario is that performed in the context
of the PowerAqua ontology-based question answering system [LMU06], where
terms of the question will need to be dynamically mapped to several online
ontologies. This run-time mapping brings up several challenges which need to
be solved by the PowerMap mapping algorithm of PowerAqua [LSM06]. As a
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result, PowerMap needs to be able to create mappings between heterogeneous
data on-the-fly and with no predetermined assumption about the source and
the ontological structure of these data. Rather than mapping being performed
during the development of the application it now needs to be performed at
run-time.

In terms of the framework presented in this deliverable PowerMap organ-
ises ontology mapping in three phases of increasing computational complexity:
First, a syntactic mapping of terms to candidate ontologies is carried out. This
step is analogous to the anchoring process described in Section 3.1, although
PowerMap does not select a reference ontology a priori, as one might not know
in advance which terms from which ontologies one may want to map. Next,
semantic mapping is carried out on the previously computed syntactic mapping
using the hierarchical structure of the ontologies and an external lexical source.
Such semantic mapping is analogous to establishing a semantic integration with
respect to a reference ontology such as WordNet, and uses techniques similar to
the those described in Section 3.2. PowerMap, however, also exploits the seman-
tics of the ontology’s is-a relationships to obtain the meaning of a term. Finally,
a semantic filtering step is done in order to filter out those ontologies that do
not cover all terms of the question. Thus, in PowerMap the mapping process is
driven by the task that has to be performed, more concretely by the query that
is asked by the user. Semantic integration is hence relative to the particular
question-answering problem. It is in this sense situation- and task-dependant
in a similar fashion as described in Section 4.2.

We have discussed elsewhere [S+06] lengthily the need of extending the
notion of ontology matching, as it has been understood in traditional appli-
cations, to dynamic ontology matching, and considered five general matching
directions which we believe can appropriately address those requirements: ap-
proximate and partial ontology matching, interactive ontology matching, con-
tinuous “design-time” ontology matching, community-driven ontology match-
ing and multi-ontology matching. In this deliverable we have explored this need
from its mathematical foundations. We have presented a framework in which we
gave concise definitions of semantic integration and alignment, and in which we
were capable to describe current ontology matching technologies in a unifying
manner. But this framework has also been suitable to highlight fundamental is-
sues and open problems for semantic integration that arise in the context of P2P
systems. We expect in OpenKnowledge to continue addressing these theoretical
foundation of the semantic heterogeneity problem to devise theoretically sound
semantic matching, alignment and refinement technology for open, distributed,
P2P systems.
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cal Hitzler. Formalizing ontology alignment and its operations with
category theory. In International Conference on Formal Ontology in
Information Systems — FOIS 2006, 2006.

20


