
OpenKnowledge

FP6-027253

Functionality Description of the
OpenKnowledge Kernel

Ronny Siebes1, Frank van Harmelen1, Spyros Kotoulas1,
Dave Dupplaw5, Dietlind Gerloff4, Fausto Giunchiglia2,

Maurizio Marchese2, Fiona McNeill4, Andrian Perreau de Pinninck3,
Dave Robertson4, Marta Sabou6, Carles Sierra3,

Lucia Specia6, Austin Tate4, and Mikalai Yatskevich2

1 Faculty of Sciences, Vrije Universiteit Amsterdam, The Netherlands
2 Dept of Information and Communication Technology, University of Trento, Italy

3 Artificial Intelligence Research Institute, IIIA-CSIC, Spain
4 School of Informatics, University of Edinburgh, UK

5 School of Electronics and Computer Science, University of Southampton, UK
6 Knowledge Media Institute, The Open University, UK

Report Version: final
Report Preparation Date:
Classification: deliverable D2.1b
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)

Partners: IIIA(CSIC) Barcelona
Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento

The functional description of the Open-Knowledge
System

Ronny Siebes1, Frank van Harmelen1, Spyros Kotoulas1

, Dave Dupplaw5, Dietlind Geldoff4, Fausto Giunchiglia2, Maurizio Marchese2, Fiona
McNeill4, Andrian Perreau de Pinninck3, Dave Robertson4, Marta Sabou6, Carles

Sierra3, Lucia Specia6, Austin Tate4, and Mikalai Yatskevich2

1 Vrije Universiteit Amsterdam, The Netherlands
{ronny,frankh,kot }@few.vu.nl

2 Department of Information and Communication Technology (DIT),
University of Trento, Povo, Trento, Italy

{fausto|marchese|yatskevi }@dit.unitn.it
3 Artificial Intelligence Research Institute (IIIA-CSIC), Barcelona, Spain

{adrianp|carles }@iiia.csic.es
4 The University of Edinburgh, Edinburgh, UK

{f.j.mcneill|dr }@ed.ac.uk, gerloff@staffmail.ed.ac.uk
5 University of Southampton, UK
davidd@ecs.soton.ac.uk

6 Knowledge Media Institute, Open University, UK
{r.m.sabou|l.specia }@open.ac.uk

Abstract. This document is the functional description a Peer-to-Peer system that
will be developed for the European Funded ”Open-Knowledge” project. The pur-
pose of the system is sharing, searching and invoking of services (i.e. pieces of
Internet accessible executable code) in a completely distributed manner. We will
describe what the system can do, what the goals are, how we evaluate it, which
techniques are applied to make it possible and tell what the differences are com-
pared to similar systems described in literature.

1 What is the Open-Knowledge System? An introduction

An open knowledge sharing system is one which places no specific boundary on the
number of people who may share knowledge and which can readily be joined by people
wishing to share or discover knowledge for complex tasks. We distinguish functional
knowledge from content knowledge. Content knowledge is the data that is shared on
the network, and that is queried by peers. This may be pictures, music, computational
services, etc. Functional knowledge is information about the functionality of services,
and the mappings and interactions between them required to use the content knowl-
edge on the OK-system. Open-knowledge will provide mechanisms and tools that will
hide the complexity of such functional knowledge. Achieving openness with ’content
knowledge’ is relatively easy, because all digital data can be shared and other projects
[(DAVE)refs to (semantic) P2P systems]have already shown that this is feasible, also
in a P2P setting. More difficult is openness in the functionality of the system where

the data is stored. We want to build a system where people can also write this func-
tionality in easy readable and executable format. No perfectly open method of sharing
knowledge can exist because of well known theoretical obstacles[(DAVE) please some
references to these obstacles]to maintaining common knowledge in asynchronous en-
vironments and practical problems in gaining consensus on semantics for distributed
information. In all open knowledge sharing, therefore, some compromise is reached
to obtain a particular form or level of openness. Traditional forms of compromise are
limiting:

The Worldwide Web : is easy to join but allows only limited forms of knowledge shar-
ing for simple tasks. The content is mostly only readable by humans and also the
way people can access this information is rather limited. For example, in most cases
there is only a search engine which you can query by boolean connected keywords.
Also the WWW is still rather data-oriented, which means that almost only docu-
ments (images, music, text etc) can be found and not yet much functionality, like
user-friendly web-services.[(DAVE) What is a user-friendly Web-service? Are
these services with an HTML front-end instead of just a WSDL description?
please explain]

Semantic webs:are built through local markup of individual knowledge repositories
or large corpora and ontologies built by large consortia or companies to standardize
their vocabulary. To be generally useful, local markup or requires broad consensus
on what terms mean, but to be confident of consensus in this absolute sense requires
knowing who to consult about the ontology used.(DAVE) Can you spell out what
are the problems of opennes of the SWs both in terms of joining them and
using them? This text still needs couple of deductions to find out what you
mean...

Web services : can be tuned to complex tasks but are specific to the programs (and
people) connected with those tasks. This means that the programmer cannot pre-
dict in which combination with other web-services it also can be useful. Currently
automatic web-service composition is still very weak and human made composi-
tions are quite expensive because they require much expertise.(DAVE) Same as
before: - hard to join: compositions done by humans - hard to use: different
views of the service bw. providers and users

Grid infrastructures : can improve performance in service delivery but suffer the
same scaling problems with respect to aligning vocabularies and functionality for
knowledge sharing as Web services.

OpenKnowledge takes a different starting point than these traditional systems(DAVE)
different from? . We begin with a strictly peer to peer architecture, in which there is no
centralised database, overall consensus on ontologies, or pre-connected Web services.
This assures a flexible, scalable and open system. Rather than relying on these (non-
scaleable) facilitators for knowledge sharing, we rely on models of interaction that are
initiated locally by peers and shared through the peer network, simplifying discovery,
ontology alignment and service composition because of the narrower interaction context
provided by these models. Crucially, the interaction models themselves are the currency
of (DAVE)functional? knowledge transfer between peers. It turns out that by using this

richer style of communication we can obtain forms of query routing; ontology match-
ing and composition that are dynamic (so adaptive to flexible peer groups) and support
complex interactions using comparatively simple computational mechanisms.

The goal of this paper is to give an impression about the system that we will con-
struct in the coming years. We give an overview of what our goals are in the next section.
Section 3 gives a literature study providing an impression of related work and where we
are different. After that, in Section 4 we take a user-oriented perspective in showing the
expected functionality for the users of the system via mockups and task-flow diagrams.
In our project we also have expertise on bioinformatics and emergency response. This
expertise is used to extract requirements for our system and to evaluate its functionality.
We discuss this in section 5. In section 6 we show how we are going to tackle the prob-
lems we need to solve in order to fulfil the requirements described in this document.
After that, in section 7 we describe how we try to evaluate the quality of the different
parts and the requirements of our system.

2 What are our goals of the Open-Knowledge System?

In this section we describewhatwe want to achieve with our system, by giving a generic
requirement analysis where many of the requirements come from the case studies de-
scribed in Section 5.

Our primary goal is to have a working system. This seems trivial, but many systems
in research projects are often too ambitious or strand due to lack of communication
between members of the project. Therefore, from the beginning of our project we put
much stress on a shared vocabulary to align the terms that occur in the different areas
of expertise. Also we start with a simple platform where the basic functionalities are
simple but work. We have to make sure that the system architecture is flexible enough
that it is easy to extend and easy to enhance the basic default functionalities.

We try to reach a large group of potential users, and therefore will pay attention to
user friendliness. We will identify different types of users and make our system flexible
enough to make it interesting both for dummies and experts. To make our goals specific
we give a requirement analysis.

2.1 Requirement analysis

The requirements do not fall out of the blue but are based on discussions with the case-
study partners from the Open-knowledge project, i.e. emergency response and bioinfor-
matics, experienced programmers on P2P systems and research papers on P2P and/or
Semantic Web systems.

– Large-Scale: in number of human participants. This first requirement points to
a user-friendly system. Although the functionality system will not depend on a
fixed user-interface, we will provide a default and easy to understand user-interface
which supports all three different types of users described later in the system. Be-
sides the user-interface also some basic functionality which should easy the life of
the OK-user is part of the core research within the project. To illustrate this we give
four examples:

• Automatic mapping (or automatic suggestions for mappings)When the user
wants to connect an output of a component to the input of another component,
it can happen that the data-types will not have the same identifier. Automatic
mapping information will help that user to connect the two components

• Automatic query relaxation. It may happen that no answers can be found for a
query posted by a user. In such a case the automatic query relaxation function-
ality can ’rephrase’ the query based on, for example, background information,
in order to increase the chance of relevant results

• Efficient component and peer discoveryA fast response for user queries is also
very important. Therefore, efficient discovery of relevant components and peers
able to play roles within those components is amust have.

– Large-Scale: in number of nodes. To provide the users with an attractive and there-
fore large set of components, many computers are needed to host the descriptions
and to run parts of the roles described in the components. Therefore, the algorithms
written as core functionality for the OK-system should be scalable to a large num-
ber of participating ’nodes’ (i.e. computers).

– Usuable for different types of users for different types of tasks:
• Average Web User: This user does not have programming skills, but is able to

fill in forms and describe what (s)he wants. Skill similar to the skill required to
use Google and to book a hotel online.

• Visual Developer: This user understands workflows, (s)he is able to design
diagrams/dataflows. Usually a domain expert (eg Biologist, Physicist), able to
formulate and decompose a complex problem into simpler parts.

• Programmer: This user understands programming languages, (s)he is able to
conceptualize, design and develop complex applications.

– Low integration effort for existing systems: It should be easy to integrate existing
services and provide interfaces using legacy protocols.

– Open Participation
• Incremental Development: Users can build on existing functionality provided

by other users.
• Enabling Reuse: Participants can execute functionality provided by others.
• Distributed Computation: The functionality can be primitive, meaning running

on one computer, but also composed, where more than one computer is in-
volved in the process.

– Means to evaluate functionality offered by others: the system should provide feed-
back to users about the QOS (quality of service) from the different components and
peers. One possibility is that the system can store and provide ratings about quality
of the services given by users.

3 Why the Open-Knowledge system is a good idea?

Clearly, others have previously identified similar goals to Open Knowledge: sharing,
searching and invoking services in a distributed and scaleable way. In this section we
discuss some of the relevant other approaches that have aimed for these goals: Web
services, Grid services, P2P systems and multi-agent systems. We won’t aim to provide

a full-scale literature study here. Instead, we will identify the key ideas behind each
of these approaches, and argue why Open-Knowledge occupies a unique niche in this
landscape.

Web Services.Perhaps the most closely related effort to Open-Knowledge is the work
on Web Services. The aim of Web services is also to enable invoking and executing
services in a distributed, scaleable and interoperable manner. The work onsemantic
Web services adds to this the goals to automatically locate and compose such services
in an open and heterogeneous environment like the Web.

Both approaches (Web services and Open Knowledge) make the obvious move of
achieving these goals by turning services into information objects (Web servicedescrip-
tions), that are then the subject of reasoning tasks for search and composition.

The Open Knowledge approach is in some ways more flexible then the Web ser-
vices approach, and in other ways more restricted. Open Knowledge is more restricted
because semantic Web service work aims at automatic on-line composition of simple
services into complex services, by means of intelligent algorithms (e.g. based on con-
figuration or planning). In contrast, Open Knowledge restricts itself to executing pre-
defined “workflows” of services (the “interaction models” to be discussed later in this
paper). The only decision that Open Knowledge makes at run-time is which service is
executed at which agent (i.e. “recruiting”, not composition).

This recruiting aspect of Open Knowledge is more general than the Web service
architecture because it separates the advertising of a service from running a service,
whereas in the Web service architecture it is generally assumed that advertisements
of service functionality are accompanied with the name of the executor of the ser-
vice. In short: the matching goals of both approaches are the same (finding a service
that matches a given functionality), while the composition goals of both approaches
are different: Open Knowledge aims to recruit peers to execute predefined workflows,
whereas semantic Web services aims to automatically compose complex workflows out
of atomic services.

Furthermore, Open Knowledge explicitly acknowledges the need for approximate
matching of service requests with advertisements, whereas this is only marginally the
case in semantic Web services, and entirely absent in regular Web service work.

Finally, Open Knowledge aims explicitly for a distributed storage model for the
workflows and service descriptions, whereas all the dominant Web service architec-
tures (UDDI for regular Web services, WSMX for semantic Web services) assume a
centralised architecture.

Grid Services.The general area of ”Grid services” is even less well circumscribed than
”Web services”, hence it is even more difficult to make a crisp comparison. In contrast
to Web services, grid-services are typically organised in fixed workflows. This makes
them more similar to the Open Knowledge approach. On the other hand, Grid services
emphasise various aspects that are ignored in Open Knowledge: long term stability
of services, provenance, quality of service and resource monitoring. Similar to Web
services, Grid services differ from Open Knowledge by advertising a service function-
ality together with the identification of the service-provider, whereas Open Knowledge
decouples these two (and hence allows for a separate “recruiting” step). Finally, and

perhaps most importantly, most Grid systems provide only a centralised mechanism for
advertising services and workflows, while Open Knowledge aims for a fully distributed
mechanism.

In particular the myGrid project ¡http://www.mygrid.org.uk/¿ is in many respects
close to the goals of Open Knowledge in it’s use of preconfigured workflows, and it’s
approach to manual composition of such workflows. However, it relies on centralised
storage of such workflow patterns, which is in sharp contrast with the fully distributed
architecture of Open Knowledge.

Peer to peer systems.Obviously, Open Knowledge is close in spirit to the work on peer
to peer (P2P) systems. The central P2P ideas of distributed storage, lack of centralised
address registers and of symmetric roles of each peer as both provider and requester are
fully adopted by Open Knowledge. Nevertheless, Open Knowledge makes two impor-
tant deviations from most P2P systems. First, most P2P systems aim at data-sharing,
whereas Open Knowledge aims atservice sharing. Of course, data sharing is simply
a special case of service sharing (namely sharing a data-access service), making the
Open Knowledge system more generic. Secondly, Open Knowledge is in the (small but
rapidly growing) family ofsemanticP2P systems, which use rich descriptions of the
content that each peer has to offer for purposes of routing queries through the network.

Agents A final class of closely related systems is that of multi-agent systems. In gen-
eral, there is a superficial similarity between multi-agent and P2P systems: distributed
sets of autonomous processes exchanging information. However, on closer inspection,
there are rather significant differences. In particular, agent systems have highly struc-
tured architectures inside each agent (often relying on cognitive metaphors for their
architectural constructs, witness the BDI architecture (Believes, Desires Intentions)),
while P2P systems typically treat their peers as atomic. Finally, agent-systems empha-
sise their pro-active nature (autonomously reacting on their changing environment),
while P2P systems in general (and hence Open Knowledge) assume more classical re-
active stance.

The differences and correspondences described above are all summarised in the
table below. This table shows both that Open Knowledge inherits many aspects from
other approaches, but that at the same time it occupies a particular niched of features
not yes explored by others.

4 How would the system look like?

This section should give the reader an impression of what happens after downloading
the default client. We do this by showing prototype screen-shots and by providing task
diagrams that show the expected behavior of the system from a users perspective.

First, we do not assume that each user has the same skills and interests with respect
to possibilities with our OK-system. Some people only want to invoke some simple
services that run somewhere on the network like a music-sharing service. Some other
people try to combine some services on the network to get a more complex service.
Programmers on their turn may add new services, for example by writing interaction

Web services similarities: service-oriented,
distributed,
automated search
based on semantic descriptions

differences: Web services Open Knowledge
composition of atomic servicespredefined workflows
fixed link to executing party dynamic recruiting
centralised advertising distributed
equivalence matching approximate matching

Grid Services similarities: service-oriented,
fixed workflows
distributed

differences: Grid services Open Knowledge
provenance absent
QoS absent
resource monitoring absent
centralised advertising distributed
fixed link to executing party dynamic recruiting

Peer to Peer Systemssimilarities: distributed,
scaleable,
symmetric roles of each peer

differences: P2P Systems Open Knowledge
aimed at data-sharing service sharing
independent of content exploit semantics

Agent Systems similarities: distributed,
scaleable,
symmetric roles of each peer

differences: P2P Systems Open Knowledge
cognitive architecture none
pro-active behaviour reactive

Fig. 1: Open Knowledge compared to other approaches

models for existing web-services. To formalize this matter a bit, we identified three
types of users based on increasing the complexities on the things (s)he can do on the
OK-system. Every more complex user can do all tasks of the simpler user plus some-
thing extra. First, we have the Average Web User that can start a browser and or an easy
KaZaa alike client. The only thing that (s)he needs to do is to fill in forms needed as in-
put for a given task, or to find components that match the task that the user has in mind.
Second, we have the Visual Composer who understands how components can com-
municate and (perhaps via an easy user-interface) combines components and/or make
more complex taskflows between them. Third, we have the programmer who can (1)
wrap legacy components to OK-components, (2)writes the interaction language telling
how to communicate with the component and (3) is able to write a semantic description
of the component which is needed by the discovery functionality of the OK-system to
match user queries with components.

To make the tasks more explicit, we identified five UML use cases shown in Figure
2 which a user can perform:

– The Execute use caseis the process where a user wants to perform a task on the
OK-system. This can be anything, like sharing pictures, finding music etc. Note
that the task can be very simple like filling in a field from a webform to something
complex like starting an application. There are several ways for a user to do a task,
which now will be described in increased order of complexity:

• User knows task and the roles for the task are automatically instantiated
by peers.In this case, a user knows what to do. For example, (s)he could know
the URL of a website which is actually hosted on a node in the OK-network.
Now, the only thing that the user needs to do is, for example, filling in a form
and get the results. In this way the user does not even have to be aware that the
service is connected to the OK-network.

• User needs to find components that fulfill the task but its roles are au-
tomatically instantiated. In this case, a user first searches for the appropri-
ate modules that reflects the task that the user has in mind. It can search via
a website (as in the previous example, by just filling in a search field), or
a specially developed OK-application/client for this purpose. For example, it
could be something similar to the user interface of the KaZaa client, or like the
mockup shown in Figure 2ae. Although we mention it here, we make an ex-
plicit distinction between the search use case and the execute use case because
they are two different activities and involve completely different aspects of the
OK-system. Namely, execution needs thePeer Discovery Service (PDS), and
searching needs theComponent Discovery Service (CDS). Although not sure
yet, this PDS could check that peers do what they promise, and change their
reputation accordingly. Also when no peers are found, theMapping Service
can find components that are similar to the one that has to be instantiated with
peers and for which peer are subscribed. This means that peers that are sub-
scribed to other components but are similar in functionality (via mapping) to
the one of interest, could fulfill the role. Besides this, when the writer of the
component allows it (described in the description of the component), a user

Fig. 2: Scheme of different user types, where each more complex user can do all tasks of the
simpler user with something extra. Namely, theAverage Web Useronly searches for Components
and executes roles described in them, and theVisual Composeralso can compose and publish
new Components. TheProgrammeris the most advanced user who is able to write Components
from scratch, for example by wrapping existing web-services into the OK interaction modelling
language.

can also download the component so that (s)he has a local copy and can run
the component on his/her own machine.

– The Search use case.As already said in the previous point, users can search for
components by giving queries. The group of Amsterdam will be responsible to add
this functionality to the OK-system, namely, matching user queries with modules.
It could be that no satisfying components are found, then the user him/herself can
rephrase the query or makes use of theQuery Relaxation Servicethat automatically
tries to rephrase the query into, for example, synonym terms. An example is that
a user searches forg̈et a histogram from a pictureänd the relaxation service would
rephrase it töget a histogram from an image.̈

– The Compose use case.The second type of users (Composers), are able, for ex-
ample by ad́rag-and-droṕuser interface, to combine two or more components. In
this way they make new composed components. For example, a simpleg̈et-most-
important-keywords̈component (with as input a text document and as output a set
of words) can be made by combining an existing or newly developed component
that stems the words from a document and another existing or newly developed
component that has as input this set of words and removes the stop words. The in-
teraction model for the new composed component will be made by the user, with
help of the system. For example, when a user tries to link the input from one com-
ponent with the output of another component and the datatypes are different, the
Mapping Service can find out if the datatypes are synonyms or not (e.g. INT and
INTEGER).

– The Publish use case.In this use case, a new component or combined component
can be published on the open-knowledge system. The system takes care that the new
component is stored in the distributed network of peers that subscribed themselves
to the Discovery Service.

– The Programming use case.This use case is the most demanding one from a
user perspective, namely here the user is able to (1) write interaction models in
the OK-interaction language and/or translate other interaction models into the OK-
interaction language, (2) write semantic descriptions needed by the discovery ser-
vices to find appropriate components to user queries, (3) wrap legacy components
(e.g. databases or pieces of JAVA or C code) and (4) accessing data that says some-
thing on what an invoker may do with the component (for example, if a user may
download the whole component or only invoke it) and about the author him/herself
(needed to derive trust). We decided that each component at least has an interaction
model, and semantic descriptions and accessing data. The developer may keep the
code (needed to run the component) private or public by putting it in the code part
of the component so that other people can run the component locally.

Now that we have identified the users and the tasks, we show a ’mock-up’ of our
envisioned system.

Searching components In Figure 3 we show a mockup of how we expect the first
default OK-client would look like. In the figure a user has a task in mind, namely the
very simple task ”sum two numbers”. After typing in the search query in the appropriate

field, the query is automatically sent to a ”Component Discovery Service (CDS)” which
is completely hidden for the user. The default implementation comes with a default
CDS (running on the OK-network), but the user can also specify another one. The
CDS is described in Section 6.4. When the query matches with components known
by the selected CDS, they will be given back to the querying peer and shown in the
user-interface. Each component has some standard information like the name of the
component, the author, the trust level, the number of peers that are subscribed to play
roles in the component, the datatypes of the input and output, and a description in
natural language that explains what the component does. When the user decides to
select a component, the only thing (s)he needs to do is to select the row in the table
with components. It could be that not enough, if any, results were found for the query
of the user. When that occurs, the user could rephrase the query in the hope to get more
results. It can also use the ”Query Relaxation Service” that automatically rephrases the
query

Running a component When the user selected the component, the system will ask
(when the publisher of the component allows it) if (s)he wants to download the code for
performing roles (described in the interaction model that comes with the component).
Making a local copy has the advantage that there is no network traffic needed, but it will
consume more computational resources on the user’s machine. For now, we assume that
(s)he did that, as shown in Figure 4. When the component expects input from the user,
the component will have at least one user-friendly interface like shown in the mockup.
The user can fill in the parts expected by the component. After that the user can press
the green ”run” button, and the component will do its job. Behind the scenes plays a
complex process, namely besides the local peer also other peers can play roles in the
interaction model of the component, these peers should be found. Finding these peers
is done at the ”Peer Discovery Service (PDS)” described in Section 6.4.

Composing componentsA more experienced user, which we call thecomposercould
decide to make some own components by linking other existing components. It is very
similar to visual programming like in the myGrid workflow editor1. The things that
the user has to do are quite simple. First, a set of components need to be found which
will be the building blocks of the composed component. Secondly, the components
have to be linked, which means connecting the output of one component to the input
of the other. A more advanced user may write complex interaction models between
two or more components, in, for example, the LCC language. It could be that the input
and output datatypes or instances from these data-types are not compatible. In some
cases it is clear that they do not match (for example a binary datastream with a URL),
but in other cases the objects are (almost) the same (for example anINTEGERwith a
NATURALNUMBER). The OK-client has pointer to a ”Mapping Service” that may try
to figure out if the data-types can be mapped, and if yes, this mapping is downloaded
and added between the links.

1 http://www.mygrid.org.uk

Fig. 3: Mockup of the future OK-system, where a user tries to search for components. (S)he
wants to have a component that is able to sum two numbers. First, (s)he types it in the search-
field. Second, the results from the network gradually fill the table. Third, the user selects the
component of interest.

Fig. 4: Mockup of the future OK-system, where a user tries to run a component. First, (s)he de-
cided to copy the component including its code to the ”local components” storage. Second, (s)he
fills in the necessary missing information in the user interface which comes with the component.
Third, the user clicks the ’run’ button and fourth, in this case the component was able to execute
the code.

Fig. 5: Mockup of the future OK-system, where a user tries to compose a component out of
two other components. First, (s)he selects the two components which will be connected. Second,
the output of one component is connected to the other. The user can now decide to publish the
composed component to the network, which would not make much sense in this case because
its a rather trivial combination. Or the user may actually execute it by first filling in the missing
input and second where the system finds a peer to run the remote ”Google” component.

Developing new componentsThe most skilled user, which we call theprogrammeris
able to develop components from ’scratch’ which means that either (s)he writes code
and make it accessible via the Interaction Model language (the standard in OK will be
LCC) and give a semantic description of the system. Also existing web-services can be
wrapped into the LCC language and be accessed from peers in the OK network.

4.1 Schematic overview of the search and run functionality

In Figure 6 we show the ternal operations in the system for search and run functionality
via an UML activity-diagram. In this diagram, the different core services (e.g. Com-
ponent Discovery Service and the Mapping Service) can be found together with the
relations between them.

5 Can you give me some examples where the system will be useful?

In this section we briefly describe two different case-studies, namely Emergency Re-
sponse and bioinformatics. For each of them we give some typical scenarios in which
our system can be of help.

5.1 Bioinformatics Dietlind

Brief generic case-study overview:Modern biological and medical research benefits
tremendously from the ”genomic explosion”, i.e. the technological advances that allow
the genetic information of individual organisms to be elucidated in a tiny fraction of the
time necessary to do this in the past. An important agreement within the research com-
munity is that much of this information, and many other experimental results that are
based on this information, is made accessible publicly. This is typically accomplished
either by offering unrestricted user access to centrally maintained resources containing
pre-computed data (hosted by sites receiving research funding to maintain them), or by
allowing the user to run specified programs interactively, to search the database or per-
form more sophisticated analyses, via a WWW-server interface. This form of interac-
tion with the data is primarily aimed at supporting the research of biologist researchers
who are ”semi-experts” in the field of bioinformatics; their interest is in optimally ex-
ploiting the resources and data offered to them but they do are not usually interested
(or able) to develop analysis software themselves. In our general description of user
profiles this user was described as ’Visual Developer’ (Section 2.1). The ’Average Web
User’ described in the same section can also benefit from bioinformatic resources. How-
ever, this latter type of user is anticipated to interact merely to retrieve pre-computed
data since his/her lack of expertise would preclude judgment of the confidence levels
associated with computational predictions etc.

While the current modes of interaction that are available to the bioinformatics com-
munity have proven to accelerate biological research tremendously by allowing access
to data produced in experiments elsewhere, some limitations are becoming noticeable
(see below). In the OpenKnowledge project this testbed will primarily serve to investi-
gate:

Fig. 6: UML taks diagram, showing the relationships between the user and the (default) services
running on the OK-network.

– its potential for reproducing the range of bioinformatic analyses, and ”customer
satisfaction”, that is achieved presently by the centralised resource model.

– its potential for addressing some of the limitations of the centralised resource model
that are affecting biologist researchers in practice.

To this end prototype systems are being developed that are targeted at specific bioin-
formatic problems (or ”scenarios”). In the first instance we hope to demonstrate the
potential of OpenKnowledge relating to specific case examples. More generally, the
interaction models underpinning the prototypes are conceptually applicable to a large
variety of other bioinformatic problems, and could be modified for use in a great variety
of current biological research.

Examples of bioinformatic case-studies:For the purpose of this functional require-
ments document, two bioinformatic problems that are currently investigated in the
OpenKnowledge project are briefly described below:

– Structural models for yeast proteins scenario: quality control through compar-
ison: a number of computational biology research groups specialize in producing
structural models for proteins based on the specific sequence of amino acid build-
ing blocks that makes up a protein molecule of interest. Where they are accurate,
predictions of this kind can provide highly valuable clues for biological research
relating to these proteins. However, the confidence in each individual prediction
is not easily estimated and many of the proposed models are completely wrong.
In practice, users of the databases providing access to the predictions attempt to
”validate” the predictions by comparing the models proposed by different groups.
Where the models (which are distributed as lists of 3-D coordinates for each atom
in the protein molecule) agree, over the whole or a part of the protein sequence, the
model is deemed an approximately correct representation of the actual 3-D molecu-
lar structure of said protein. While this approach is obviously only useful if different
methodology was applied to produce the models used in the comparison, the com-
munity of expert groups in protein structure prediction consists of a respectable
number of research groups that employ different, or partially different, methods,
which makes this scenario interesting to investigate in its own right. However, in
the first instance, it is treated here as a prototype minimum scenario that depends
critically on only very few functionality requirements. In this prototype, the interac-
tion models basically aim to retrieve pre-computed data from resources that do not
(intentionally) participate as peers in the network. The prototype requirements also
apply to many equivalent sub-scenarios in larger, more complex problems, and ex-
tensions to the prototype (e.g. where the comparison of data becomes is carried out
as an interaction itself, while it is performed by the user in the prototype scenario).
The functionalities expected of an Open Knowledge prototype of this kind are:
• database/webserver ”wrapping”the system should support the inclusion of re-

sources as peers that participate without their knowledge. This is important to
enable currently centrally maintained resources (e.g. sequence and/or structure
databases) to be linked into the peer-to-peer network and will be accomplished
by converting the relevant web sites into web services via a wrapper that en-
ables them to ”participate” in OpenKnowledge interactions

• interaction with the user interfacethe system should allow a degree of inter-
action with the user, particularly in the selection of peers consulted to tackle a
problem. This is important here because this scenario is targeted at the inter-
mediate user (’Visual Developer’ type).

• availability of provenance (and possibly peer reputation) datathe system should
enable the user to ascertain what methodology was applied (and/or which other
peers have been consulted) by a peer to arrive at the models offered.

– Proteomics scenario:data sharing and quality control The number of different
proteins that are present in a certain tissue (e.g. human liver cells) under certain
conditions (e.g. after intake of alcoholic beverages) can easily reach several hun-
dreds, or more. Characterizing this contingent of proteins, i.e. identifying as many
as possible of the proteins present and considering other information that is known
about each of them, is crucial for biologists trying to understand the underlying reg-
ulation and adaptation of the respective biological system (here the human liver). A
technologically advanced strategy to characterize proteins at a large scale involves
fragmenting the proteins and the use of mass spectrometric analysis to determine
the amino acid sequence of each fragment. This technique is often referred as ”Pro-
teomics” by biologist researchers. To accomplish an actual identification of each
protein, the fragments are compared to the sequences stored in centrally maintained
databases. This is undertaken either in-house or via WWW-servers and the chances
for identification vary depending on the quality of the samples subjected to mass
spectrometry. Given this limitation, proteomics experts express a great interest in
gaining access to data resulting from their colleagues’ research, to help them with
their own analyses. Interestingly, even access to data that was of no further use to
some researchers and was discarded, could be of interest to others. While this sce-
nario involves various additional complexities compared to the one described above
(such as a prospective user community at the ’Average Web User’ level (Section
2.1)), it poses an interesting data sharing challenge as a sub-scenario, for which
OpenKnowledge may be able to provide a solution. The information to be shared
in this sub-scenario is primarily protein sequence information, functional annota-
tion, and mass spectra (which can be represented as lists of numbers specifying
peak positions and intensities).
The functionalities of an OpenKnowledge-oriented system we would like to inves-
tigate and test in this case are primarily:

• distributed data storagethe system must support shared access to data pro-
duced by other peers. The benefits of peer-to-peer data sharing should become
apparent, both with respect to the accuracy of research results users obtain us-
ing the OpenKnowledge system and with respect to the effectiveness of the
process (by comparison to the current situation where the data from other re-
search groups is not acceessible).

• incremental developmentthe system should support the passing on of inter-
action models (or sequences of interaction models) used by different peers to
interpret the mass spectra and identify the protein to which the fragment may
belong. To an extent this is addressed by the provenance requirement listed
above but we would expect this form of knowledge to play a more interesting

role in this scenario, to allow some peers to consult the network for expert ad-
vice about how to analyze data as an alternative to simply perusing the peer’s
data.

• query routing and constraint/semantic matchingby contrast to the first exam-
ple, the targeted user is predominantly at the ’Average Web User’ level and
will expect that decisions are made for them, e.g. regarding which peers to
consult. Besides a more autonomous interface this is likely to pose challenges
with respect to matching descriptions of user interests and offered expertise
and services by other peers.

5.2 Emergency Response

Brief generic case-study overview.
Emergency crises - be it a natural, industrial or metropolitan disasters - are com-

plex situations, with large numbers and varieties of mobile agents medical and rescue
teams, police, fire fighters and generic people involved and, in the case of emergency
personnel, appearing on the spot at short notice. These different teams generally have
incomplete or even contradictory knowledge of the crisis situation. Realtime access
to information and knowledge is clearly essential since all emergency response proto-
cols are developed and implemented through the analysis of information. Information
comes usually from a variety of distributed sources and a great part of the information
in emergency response is spatial and needs to be mapped and appropriately visualized.
During an emergency it is critical to gather the right data, at the right time, display them
logically and contextually in order to respond and take appropriate action.

Moreover, emergency response activities usually involve a range of different teams
from various organizations with their own systems and services. At present, most of the
sharing of relevant information that is required for dealing with emergency is limited to
a raw data exchange with all the syntactical and semantical conversion problems.

In the Open-Knowledge project, the challenges of such a testbed are

– the rapidity of formation of emergency coalition often very intense and opportunis-
tic communities of practise - and the need to provide answers in real time;

– the necessity of high quality answers
– the richness of the data involved - geographical data deals potentially with a large

number of metadata and layered information

This balances well with the previous bioinformatics scenario in which communities
of practise are usually slower to form, longer lasting and the pace of cooperation is not
normally under such extreme time pressure.

Examples about typical scenarios in this case-study.
For the purpose of this functional requirements document, let’s briefly describe a

number of possible scenario that we are currently analyzing:

– Geo Database management scenario:in this scenario the focus is supporting the
coordination, integration and distribution of GIS data among the agencies respon-
sible to maintain the geodata of the territory (local authorities). This is a ”prepared-
ness” scenario for different kind of emergency, in the sense that, it is a prerequisite

for an accurate and appropriate data usage during the actual and specific run-time
emergency scenario. The main issue here is that every agency produces a large
number of datasets, but, even if they are published as ”public data”, often their
metadata are not available by the other agencies. Moreover, the individual agencies
could provide some additional services (specific databases, capability to create ad-
ditional thematic layers, specific expertise etc..) but most often they do not explic-
itly provide the sequence of operations needed in order to use those functionalities.
The functionalities of a OK oriented system, we would like to investigate and test
in this use-case are:
• coordination and integration of logically distributed geo databases - the system

should support users and system managers in the integration effort of existing
systems, while maintaining individual autonomy and responsibility;

• semi-supervised support for semantic searches within the peers and semantic
mappings among their offered data and/or services - the system should support
users to find appropriate interaction models, peers roles, services as well as
navigate/search through the distributed repositories;

• support to different visualization channels - depending on the data, on the de-
vices used and on the purpose of the request, it is important to support versatil-
ity in visualization: providing common structures but also allowing customised
visualization by both peers and interaction designers;

– Emergency signaling scenario:in the not-too-distant future, every citizen, vehicle,
in-transit package, and other active device might be treated as a potential sensor or
responder. Individuals or vehicles that want to signal an emergency (or simply need
help), as well as local, regional, national, and international emergency agencies,
could look up specialized capabilities or find local assistance through a much more
responsive and effective environment. Such systems will need to interoperate both
at the technical and at the semantic level. The functionalities of a OK oriented
system, we would like to investigate and simulate in this use-case are:
• support semantic interoperability among the involved peers - each involved

peers will use contextual information to provide or process (signaling) infor-
mation;

• support the scalabilty of the system as the number of potential peers increases
radically from a limited number of emergency agencies, teams and personnel
to potentially the whole population of a given area.

5.3 SW Tool development

Despite a conscious effort made by the Semantic Web community to migrate and ap-
ply its semantic techniques in open, large-scale, distributed and heterogeneous Web
environments, existing Semantic Web tools rely on a set of simplifying assumptions
mostly considering a controlled, small-scale, centralized and homogeneous setting. In-
deed, these first generation tools can only be considered as a proof of concept of the
potential of semantic technologies. For example, most tools rely on a single ontology
and therefore function only within the domain defined by this ontology. This is the
case of two of the Semantic Web tools developed at KMi. The first tool, AquaLog

is an ontology-based question answering system that interprets a question asked us-
ing natural language and uses the structure and instances of an ontology to answer the
question. While AquaLog is portable from one domain to another, it is constrained to
answer questions phrased using concepts defined by the ontology that it incorporates at
a given moment. Our second tool, Magpie, is a semantic web browser that provides new
mechanisms for browsing and making sense of information on the semantic Web. This
tool makes use of the ontology-based semantic annotation associated with a Web page
to help the user get a quicker and better understanding of the information on that Web
page. Magpie is portable from one domain to another as it allows the user to choose the
appropriate ontology from a list of ontologies that are known to the tool. However, sim-
ilarly to AquaLog, the current version relies on a single ontology active at any moment
in time. This limits the scope of the sense making support to the content of the current
ontology.

To fully prove the potential of the Semantic Web, existing tools should be re-
implemented by dropping the assumptions taken in the early years of the Semantic
Web. Concretely, this could mean that the new generation of tools will be capable of
dynamically selecting and combining appropriate semantic data directly from the Web,
i.e., to perform a self-adaptation to the current domain of interest of the user. For ex-
ample, AquaLog should be able to answer questions in any domain by automatically
selecting and combining appropriate metadata available on the Web. Magpie should be
capable to provide appropriate semantic guidance for Web pages in any domain thus
allowing the user to freely navigate the Web without the need to install a new ontology
every time the topic domain of the viewed page changes. Scaling up semantic web tools
to deal with the large amount of dynamically changing online available metadata is not
an isolated phenomenon. Indeed, generally speaking about the success factor that dif-
ferentiates Web 1.0 from Web 2.0, Tim O’Reilly derives the following success criterion
in a recent article ”the value of the software is proportional to the scale and dynamism
of the data it helps to manage”.

From the perspective of semantic web tool development in general, and the KMi
specific tools in particular, we identify three potential roles to be played by the Open-
Knowledge project:

– Provider of new technology that supports automatic resource discovery.In par-
ticular the ontology mapping research will focus on developing dynamic ontology
mapping techniques, i.e., robust and efficient mapping techniques that can be used
at run-time by other tools. These techniques are essential in the case of both KMi
tools and more widely for any tool that relies on combining distributed, hetero-
geneous semantic data.2Data provider. The OpenKnowledge system could be a
primary data source for SW tools. On one hand, it could offer access to several data
discovery services that would be registered with the system. On the other hand, the
OK system itself could exploit the wealth of semantic data (and not just services)
brought in by its peers and the various mappings between these data sources to of-
fer its own data discovery service (which could probably rely roughly on the same
principles as the discovery of interaction models).

– Development platform for SW tools.We can also think of the OK system as a
development platform for SW tools oriented towards modularity and resource shar-
ing. Indeed, we envision that our own SW tools could be split in several components
and published to the OK system as interaction models that capture the invocation
logic between these components. This strategy would allow SW tools to share and
exchange generic modules such as for example, ontology stores, ontology selection
and mapping algorithms. It is likely that this style of component based program-
ming will encouraged the development of standard interfaces for several types of
generic SW tools (e.g., such as the DIG interface for reasoners).

6 Which techniques will be applicable?

This section links the technology that we expect to exploit and develop in Open Knowl-
edge to the functionality of the system.

6.1 Interaction models

An interaction model is a set of conventions that regulate dialogues between peers.
These conventions include atomic actions over knowledge components (through their
WSDL-like descriptions), their combination into tasks, and the flow of tasks to dynami-
cally accomplish objectives of the peers. Examples of atomic actions could be ’copying
a document’, ’searching for content within a document’, or ’activating a service’. Ex-
amples of tasks could be ’classify a picture in a class’ by combining atomic actions
like ’computing a histogram’ and ’classify the histogram’, that may be performed by
different peers. An example of flow could be, ’search for x-ray images of a certain type
of patient’, then ’classify them according to graphical features’, and finally perform
’statistical analysis of the resulting classes’.

A language for interaction modelling must allow the description of:

– Conventions on norms, that is, the consequences of atomic actions of a plug-in
over knowledge components (e.g.copying a picture might include commitments
of paying a certain copyright) or of messages between plug-ins (e.g.agreeing on
delivering a service might make a plug-in incur in a penalty if the service is not
available by a deadline).

– Conventions on the task flow, that is, what joint (multiple peer) activities the plug-
ins engage in and in which order.

– Conventions on how each task in the task flow is actually accomplished by the
corresponding set of peers through a joint plan of action.

Peers thus need to be able to understand interaction models expressed in a formal
language. These models drive the dialogues among peers to accomplish knowledge
management tasks. Moreover, given the openness of our approach, peers must include
in their basic protocol the capability of establishing dynamic agreements upon concrete
interaction models, and the capability of talking about other pragmatic elements like
trust, reputation or quality of service. We use as a vehicle for this a form of process
calculus that provides a declarative specification of the required interaction: and inter-
action model. This has the following three advantages:

Describing interaction independently from servicesIn OpenKnowledge the interac-
tion is portable between services (rather than associated with individual services)
so it must be described independently of specific services but, once it reaches a
service, it must be possible for that service to connect precisely to it.

Separating state of service from state of interactionAll interactions have state but it
is impossible to synchronise the state of all services in an open, distributed system.
The OpenKnowledge solution to this problem is to separate the state essential for an
interaction to proceed from the overall state of the distributed system. Typically the
specifics of state essential to an interaction are simple and compact, and therefore
may be maintained as a form of “contract” between participating services.

Making interaction state portable and inspectable Key to OpenKnowledge is the idea
that interactions themselves can be treated as objects to be analysed and transported
between appropriately enabled services. This is what allows us to connect facilities
(described later) of context maintenance, discovery, ontology matching,etc.

The essentials of our interaction modelling language, with a description of a mech-
anism for making it operational, are in [?].

6.2 Mapping

The matching problem within OK framework arises due to inherent heterogeneity of
terms in the peers’ service descriptions. Thus, one peer can haveexpert finder as its
service role while the others could haveperson finder, expertICT finder, expert broker.
While the first and the fourth role denote services which are essentially equivalent, the
second is more general thenexpert finder, while the third is less general. In fact
these terms are used in the context of local, a priori defined, often left implicit on-
tological description of the world. The solution we propose is to construct semantic
mappings (e.g., less and more general then, equivalent to and disjoint from) exist-
ing between the terms used during the interaction. One example of such mapping is
< person finder, expert finder, LG >, stating thatexpert finder is less gen-
eral thanperson finder. These mappings are those defined and used in C-OWL [3].
We discover semantic mappings exploiting semantic matching approach [4, 5]. This is
applied at least in three phases:

Role matching aligns the different ways in which role are described when initiating or
joining interaction. An example is the mapping< person finder, expert finder,
LG >.

Term matching aligns (structured) terms within the clause defining a role in order to
undertake an interaction. An example of matching isget address, which in one
peer can get 2 arguments (e.g., name of the person and his/her address) and in
another three arguments, where the third argument (e.g.,Type of Comm) could
discriminate whether we need an address for personal or work communication.

Query/Answer matching takes place when running an interaction model and deals
with the semantic heterogeneity arising from the statement of a query and in the
values returned in its answers. For example, an interaction model specifying that the
address finder needs to look up the address forStephen Salter by invoking the

get address(”Stephen Salter”, A) operation is not guaranteed to match perfectly
to the operation the peer actually can perform. Perhaps the operation used by the
peer isfind address and the surname is expected firstSalter, Stephen.

6.3 Query relaxation

The query relaxation techniques are exploited within OK framework in IM and service
discovery processes. Thus, the user has to obtain ”good enough” IM while queering
P2P network and the peers recruited for given IM should be ”good enough” performers
of their roles. The notion of ”good enough answer” is defined in literature [6] as ”an
answer to a user query which serves its purpose given the amount of effort made in
computing it”. There are two key points in the definition:

1. A query answer should serve its purpose. Users submit queries in a specific context,
giving the queries a specific purpose. The purpose of the query can be expressed as
a vector (W) of answers quality features (e.g, relevance, precision, trust, etc.).

2. A query answer should be parametric on the initial effort. Users are likely to be
willing to invest more resources with the purpose of getting higher quality answers.
How much resources user should invest to receive answers with required qualityW
can be specified by vector of recoursesH (e.g., effort, CPU time, network band-
width, etc.).

Therefore, in the process of query relaxation the user trades answer quality parameters
W on the amount of resourcesH he is willing to spend on the search process. The trade
off between them is defined by query relaxation functionFH . FH can be either defined
analytically or learned from user interactions with the system.

6.4 Discovery

As already mentioned previously, in our system a there are two moments that a search
is issued, namely first when a user types in a query the system needs to return a set of
relevant components, second when the user selected the component that fulfils the need,
it needs to find peers that can play the roles described in the components. Each default
client in the open-knowledge will have a default search interaction model and a pointer
to both a default Component Discovery service and a Peer Discovery service. For this
moment we assume that both component descriptions and peer descriptions are a set
of terms (i.e. keywords) which describe the functionality and expertise respectively.
Therefore, discovery systems found in literature and the ones that we will develop in
the first phase of the project will be identical, because in principle they both have the
same functionality, i.e. matching term sets (queries) with term sets (component descrip-
tions and peer descriptions). As we will discuss, we take the approach of combining
DHT’s with Semantic Overlay Networks (SONs). With the SON approach peers are
going to know some peers not only by address but also by their expertise which means
a ’semantic’ description of the data. The word semantic means something like a hu-
man and machine readable description of some domain of interest. The big advantage
of having knowledge about the content of other peers is that queries can be forwarded

to the best matching ones (instead of random), resulting in a more efficient forward-
ing process, i.e. less bandwidth usage. DHTs are currently seen as a good competitor
with the SON approach. The generic idea of DHTs is that each item that is shared on
the network is hashed to a unique hash-key. This key serves as message identifier, and
the message is efficiently routed to the peer whose network identifier lies closest to the
key. With efficient, we mean that only O(logN) messages are needed to route the mes-
sage to that peer, where N is the number of peers in the network. This means that each
peer is responsible for a key-space and therefore becomes a kind of yellow-page for
content for this key-space. The items (and the appurtenant content) can also efficiently
be retrieved if the requester knows the key. Current discovery systems either are not
aware of term semantics, and therefore cannot support approximate query answering
([13][9][1][8])[12], or if they do [11][10][7], updating the (shared) structures that cap-
ture term semantics is expensive. Peers can gather descriptions using either a pull or a
pushed based approach. Most systems use a push based protocol [10][7][8]: Peers ad-
vertise their data (or a summary of their data), and other peers decide to remember them
or not. Alternatively, it could be more efficient for peers to pro-actively pursue data that
will enhance their local knowledge. We are proposing a method where peers muster
descriptions relevant to their own. Once calculating which are the most important terms
for them, they pull descriptions with that terms using the DHT. For example, a peer re-
sponsible for RDF can easily detect that OWL and reasoning are important terms for it.
Then, it can ask for descriptions with these terms from the peers responsible for them.
Now, it will have a broader view on topics close to RDF. We can apply such a process
recursively. Peers compute the most important terms in their local data, ask for more de-
scriptions with that terms and repeat, therefore improving semantic locality.We expect
that this technique will improve the performance of language processing techniques
that are applied locally (eg LSI), in turn improving support for approximate answers.
Furthermore, it should improve the efficiency of the discovery system, since now data
are semantically instead of lexicographically clustered. In pRoute, we have seen that
semantic clustering of peers can increase recall by an order of magnitude compared to a
random overlay[10]. We expect that clustering data instead of peers will have a similar
effect, since, in both cases, we are clustering sets of related terms. Besides the seman-
tic relatedness measures to match queries with descriptions, also mapping techniques
described in the previous subsection can be used by the discovery services. Therefore
we also will have a component- and peer discovery service that combines the semantic
similarity measures together with the mapping functionalities.

6.5 Security and Trust

The research on trust and reputation will be based on refining the existing model by
Sierra and Debenham [?,?] CARLES PLEASE GIVE THE BIBTEX that uses prin-
ciples of information theory to analyze the dialogues among agents. The information
interchanged in dialogues is used to asses the probabilities of a number of predicates
that are supporting the notion of trust, relationship building, or honour. Maximum en-
tropy inference and ontology semantic distance are the basic tools that permit the best
use of every single piece of information.

In this model, the basic trust predicateT (α, β, δ) represents the trust agentα has
on agentβ on deals of typeδ. Being the trust anexpectationthatα has ondeviationsof
behaviour of agentβ on deals of typeδ.

From the perspective of peer-to-peer interactions the notion of trust is somehow
conditioned by the interaction model being used. An agreement will be more or less
easily broken, or deviations might be expected depending onhow that agreement has
been reached. In this way, interaction models that provide room for long discussions
and explanations would perhaps lead to more solid contracts that interaction models
that force reaching agreements in a less flexible way. From this initial thought, and
taking into account the architecture being proposed in the project we will study the
notion of trust with respect to two different entities:

– AgentsPeers will make available agents (or services) to participate in interaction
models, i.e. to incarnate roles and ‘run interaction models. This process is call ’peer
recruiting’ and it is done with the help of thepeer registrycomponent of the peer
architecture. These agents can perform well or not according to the expectations.
As said before, they might have a different behaviour from the one expected, and
therefore they are more or less trustworthy. Agents might be private, so you can
only execute at the peer site, or they might be public and you can copy them, run
them in your machine, and even make them available from your peer to the rest
of the network. Trust will definitely influence in the decision of whether make an
agent available to others or not. Trustworthy agents will probably spread in the
network and untrustworthy one will probably die out.

– Interaction modelsWhen trying to solve a problem peers will need to find inter-
action models that drive the execution of services or the interaction among agents.
The architecture deals with that using the discovery service. Interaction models
will guarantee different properties of the interaction/dialogue between agents and
therefore they might allow for different levels of fraud/wrong behaviour. Therefore
it makes sense that interaction models have different levels of trust depending on
what is the goal of the interaction.

In this way we are aiming at defining two trust measures:T (α, β, δ) the trust of
agent or peerα on β for interactions of typeδ, andT (α, IM, δ) the trust of agent or
peerα on the interaction modelIM for interactions of typeδ.

Reputation, as the opinion of a group on some matter, will also be studied within the
project along the same two dimension of trust: Reputation of agents and reputation of
interaction models. We consider centralised models as not being appropriate given the
P2P approach of the project and we’ll aim at a distributed (i.e. social) reputation model.

6.6 media2Semantics

Automatic Media Analysis When a user instantiates an interaction model that uses
some multimedia, it may be necessary for some automatic media analysis to take place,
to avoid the user having to provide input into the system. Clearly, this is only going to
be appropriate in certain situations where the current techniques in media analysis are
able to provide solutions.

Let us consider a user who fits the visual composer use case. This user publishes
holiday brochures that attract tourists to pretty locations. To help them create these
brochures they are creating an interaction model that, when executed, will deliver a set
of images of natural scenes from a given place.

At first they searched the network and used a Google Images component to retrieve
images of the place they were interested in, e.g. ‘England’. They found the results were
poor, so they concatenated “natural” to the search (e.g. ‘England natural’), and the re-
sults now contained the type of images they wanted, but also contains many others that
were not relevant.

They searched on the network for components that would take an image (or set
of images) and return whether it is a landscape-type of photo. They composed this
component with the Google Images component to filter the results of the Google Images
component to retrieve only those images that were of pretty landscapes of the place they
chose.

Now, the component that takes each image and looks at it to decide whether it is a
landscape-type of photo uses automatic analysis of the media content to achieve this;
it is the only way to do this kind of analysis. Research in content-based image analysis
has provided a means for achieving this specific kind of functionality, as well as other
similar content-based techniques.

Detecting landscape-type photos can be achieved by various combinations of edge
direction coherence analysis and colour analysis, for example. Face detectors can be
built using forms of colour and shape filtering to increase the precision of Google Image
results for ‘Group’ or ‘Face’. There are many other content-based detectors available
and, like those described above, are all specific to some domain of image or object.
Other research being undertaken is taking a Web 2.0 approach to classifier generation,
taking the community view of some concept from Flickr and generating classifiers using
those photos as training data.

Such media analysis often returns some conceptual classification from some image,
allowing various flow control selections, or filtering to take place within the interaction
model. However, it is possible that the media analysis will return a vector of numbers
that will require a separate component to provide some extra meaning to. This can also
be readily achieved using OpenKnowledge, by simply sharing the relevant components.

Once our visual composer has created their interaction model, that takes the name
of a place and returns pretty photographs from around that place, they may share their
model, so that other users may also search for such pictures.

Automatic Media Annotation We see automatic media annotation as an important
part of the OpenKnowledge system. Although in section 6.6 we have described a very
specific use case, where a user takes a landscape-type photo detector and uses it within
their composition of components (interaction model), such media classification will be
very important in very specific cases, such as the bioinformatics scenario. Although
the media analysis components that would be useful for this domain will have little or
no use in other domains, by making those components reusable in an OpenKnowledge
scenario, new services that inhabit that domain will automatically have use of those
analysers.

As new techniques are developed for detecting and analysing media more generally,
new interaction models can be built that provide ever-better functionality on general
photos; perhaps more importantly, opening the classifiers to the network means that
new and unforseen uses for them will become available as new interaction models (a
Web 2.0 view of the world).

6.7 Semantic Web Tools

The Open University will explore the innovations provided by OpenKnowledge to en-
hance two tools aiming to support user tasks on the web: a question answering system
(Aqualog) and a semantic web browser (Magpie).

Currently, both systems can use only one ontology at any time to support the tasks of
query answering or semantic browsing. This limits particularly the coverage of the an-
swers in Aqualog and the sensemaking support in Magpie. The reason for this limitation
is that in order to support question answering or semantic browsing on the semantic web
in large scale, important technical issues, which are key to the OpenKnowledge project,
to do particularly with dynamic ontology mapping and the ability to reason about the
quality of information coming from different sources, have to be solved.

In the enhanced versions of these systems we intend to extract knowledge coming
from multiple ontologies, in principle, from any ontology available on the web. As re-
sult, we expect Aqualog to become a general-purpose ontology-based question answer-
ing system on the web, and Magpie to provide semantic support for general-purpose
web navigation and sense-making. Therefore, we will rely mainly on the dynamic on-
tology mapping method to be provided by OpenKnowledge.

As a consequence, this will allow us to investigate whether the OpenKnowledge
technologies can be integrated with existing technologies and thus enable the develop-
ment of new, more powerful and flexible user-centered semantic web tools.

7 How will you evaluate your system?

In this section, we tell at least how we are going to evaluate the requirements given in
section two, and besides this each partner describes how they evaluate the usefulness
or other characteristics of their technology that they bring in (given in the previous
section).

7.1 Interaction models

Two empirical questions are crucial for peer to peer use of interaction models: whether
our mechanisms scale to systems containing millions of components and whether they
can be deployed in a manner that promotes the development of communities of practise.
Although these two questions interact, the experimental methods appropriate to answer-
ing them are different. In the former case we require series of laboratory experiments
using a test rig that controls the environment in which we deploy our methods - the aim
being to produce results that hold generally for systems that preserve our experimental
assumptions. In the latter case we support people in use of the OpenKnowledge tools -

the aim being to demonstrate by example how nuclei of communities of practise can be
fostered in specific domains of application.

Scaling experiments : The reason a peer to peer architecture is attractive is that it
offers the prospect of obtaining satisfactory performance via opportunistic interac-
tions between peers at run time, rather than structuring their interaction at design
time. The broad experimental issue is whether satisfactory performance in auto-
mated knowledge sharing can be achieved by this means. The more specific hy-
pothesis to be tested is that a combination of our mechanisms for interaction model
interpretation, ontology matching and query routing exists such that satisfactory
performance may be predicted to an acceptable level of accuracy from any starting
state of knowledge in constituent components, with performance reaching levels
remaining constant as number of components increases. We look for satisfactory
rather than perfect or optimal performance because we recognise that the price
paid for the scaling benefits of a peer to peer architecture is a reduction in overall
quality of answer and predictability of outcome.

Development of communities of practise: To be viable in practise a system must
support a community of practise - a group of like-minded people who develop a
vested interest in maintaining the system. A peer to peer system that experimen-
tally confirms the scaling hypothesis above may not develop a community of prac-
tise. Conversely, a system that disconfirms the scaling hypothesis in general may
in practise scale large enough to support substantial communities of practise. Our
hypothesis is that an engineering process exists for initiating and maintaining peer
to peer networks such that stable communities of practise are established. Since a
community of practise is always domain specific it is impossible to confirm this
hypothesis in general - the best we can do is confirm it on specific examples so our
experimental method is case study.

7.2 Mapping

The quality of matching can be evaluated either (i) directly (i.e., by exploiting the
golden standard of the mappings holding between terms and role descriptions) or (ii)
indirectly (i.e., by observing the user satisfaction measures when all the other parame-
ters of the system (e.g., number of peers in the network, routing algorithm results, etc)
are fixed).

Considerable human effort is necessary in order to construct the golden standard
in (i). However, these efforts can be partly automated (see [2] for more details). The
results of evaluation on the golden standard further can be reused in computation of
query relaxation functionFH . Moreover they will allow to compute the widely used
matching quality measures of Precision and Recall.

An indirect evaluation (ii) requires less human effort since the user satisfaction mea-
sures can be computed in either explicit or implicit way in the process of user interaction
with the system. However matching quality is only one of the factors which may influ-
ence on the quality of results presented to the user. The number of peers in the network
and quality of semantic routing algorithm results are among the others. Therefore the
non trivial task in this case is to distinguish among the influence of various factors on
the quality of answer.

7.3 Query relaxation

The quality of the query relaxation techniques can be evaluated by comparison the
observed user satisfaction measures in the cases when the query relaxation techniques
are exploited and omitted respectively.PLEASE EXTEND THIS PART

7.4 Discovery

We will evaluate the discovery algorithms via simulations and by doing field experi-
ments with the ’real’ system which is discussed in this paper. We evaluate the influence
of different instances of algorithms and parameters like the maximum number of adver-
tisements and query hops in the network via indicating user satisfaction (measured as
component and peer description recall), system efficiency (number of messages sent)
and robustness.

7.5 Security and Trust

We plan to empirically verify the trust and reputation models in the two case studies of
the project. The two case studies are rich enough to explore the possibilities that a trust
model can offer. In particular:

– Emergency case study. It is easy to imagine the need for trust on (e.g.) fire brigades
and other roles in order to organise and co-ordinate rescue teams. Emergency protocols/co-
ordination protocols can give different results, and therefore trust on interaction
models makes sense in this case study.

– bioinformatics case study. In proteomics, trust on peers, either laboratories or data
bases, seems important. Reliability of information is the essential aspect here, so
trust in the previous information-based sense is central. Trust on the interaction
models to get the right information is also important (e.g. what processes are ap-
plied to the samples or what types of agents (roles) where used in the interaction
model)

7.6 media2Semantics

The only way to evaluate the inclusion of such an abstract part of the system is empiri-
cally, by building interaction models using classifiers that have been wrapped into OK
Components and attempting to utilise them in some interaction models to show their
usefulness. We can show how they can be useful in specific cases by leveraging the
scenarios to provide use cases for the techniques suggested.PLEASE EXTEND THIS
PART

7.7 Semantic Web tools

One of the goals of the Open Knowledge project is to adopt technological advances
from the project in order to enhance its existing Semantic Web tools and to test the
improvement brought by the new technology with respect to traditional techniques. In
particular we will evaluate the following aspects:

Answer coverage for PowerAqua.As PowerAqua will have access to an increased
number of ontologies and their associated metadata thanks to the dynamic ontology
mapping mechanism, we expect that the number of queries that it will be able to
answer will also increase. Therefore, we will test the number of queries answered
by AquaLog, the traditional version of PowerAqua, and PowerAqua.

Answer quality for PowerAqua. Access to more metadata should allow this tool to
correctly answer a larger amount of queries. Here we are not only interested in the
number of questions that it is capable to handle (as before) but in the number of
questions that it cananswer correctly.

Extended scope for the Semantic Browser.Our hypothesis is that the Semantic Browser
will be able to provide semantic markup for Web pages displaying information from
a large variety of domains instead of being limited to provide semantic markup for a
single topic domain only as it is currently. We wish to evaluate this extended scope
of the tool in terms of number of Web pages that it can handle and the richness of
semantic annotation that it can find and display.

Time performance. Both tools will rely OpenKnowledge technology at run-time while
being employed by users. Therefore, it is important that they provide a good time
performance. Obviously, this requirement is harder to achieve when they rely on
automatically selecting and using ontologies than in the case when they were using
a single ontology.

Usability is an important requirement for our two tools and it will also be evaluated.
In this case we will rely on extended expertise in KMi to conduct user evaluation
experiments.

Acknowledgements:This work has been supported by the FP6 OpenKnowledge project2.

References

1. JXTA project. see http://www.jxta.org.
2. P. Avesani, F. Giunchiglia, and M. Yatskevich. A large scale taxonomy mapping evaluation.

In Proceedings of International Semantic Web Conference (ISWC), 2005.
3. Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano Serafini1, and Heiner

Stuckenschmidt. Contextualizing ontologies.Journal of Web Semantics, 1(4):24, 2004.
4. F. Giunchiglia and P. Shvaiko. Semantic matching.The Knowledge Engineering Review

Journal, (18(3)):265–280, 2003.
5. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-Match: an algorithm and an implementation

of semantic matching. InProceedings of 1st european semantic web symposium (ESWS’04).
6. Fausto Giunchiglia and Ilya Zaihrayeu. Making peer databases interact - a vision for an

architecture supporting data coordination. InCIA ’02: Proceedings of the 6th International
Workshop on Cooperative Information Agents VI, pages 18–35, London, UK, 2002. Springer-
Verlag.

7. Peter Haase, Jeen Broekstra, Marc Ehrig, Maarten Menken, Peter Mika, Mariusz Olko,
Michal Plechawski, Pawel Pyszlak, Björn Schnizler, Ronny Siebes, Steffen Staab, and
Christoph Tempich. Bibster - a semantics-based bibliographic peer-to-peer system. In
Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors,International

2 http://www.openk.org/

Semantic Web Conference, volume 3298 ofLecture Notes in Computer Science, pages 122–
136. Springer, 2004.

8. N. Leibowitz, M. Ripeanu, and A. Wierzbicki. Deconstructing the kazaa network. 3rd IEEE
Workshop on Internet Applications (WIAPP’03). Santa Clara, CA., 2003.

9. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. InIFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), pages 329–350, Heidelberg, Germany, November 2001.

10. R. Siebes and S. Kotoulas. proute: Expertise-based selection using shared term similarity
matrices. In K. Verbeeck, K. Tuyls, A. Noẃe, B. Manderick, and B. Kuijpers, editors,Pro-
ceedings of the 17th Belgian-Dutch Conference on Artificial Intelligence, pages 202–208,
Brussels, Belgium, October 2005. Contactforum.

11. Chunqiang Tang, Zhichen Xu, and Mallik Mahalingam. pSearch: Information retrieval in
structured overlays. InACM HotNets-I, October 2002.

12. Bernard Traversat, Mohamed Abdelaziz, and Eric Pouyoul. A Loosely-Consistent DHT
Rendezvous Walker. Technical report, Sun Microsystems, Inc, March 2003.

13. Universal Description, Discovery and Integration of Business for the Web.

