
OpenKnowledge

FP6-027253

Architecture Description of the
OpenKnowledge Kernel

David Dupplaw4, Uladzimir Kharkevich5, Spyros Kotoulas1,
Adrian Perreau de Pinninck2, Ronny Siebes1, and Chris Walton3

1 Faculty of Sciences, Vrije Universiteit Amsterdam, The Netherlands
2 Artificial Intelligence Research Institute, IIIA-CSIC, Spain

3 School of Informatics, University of Edinburgh, UK
4 School of Electronics and Computer Science, University of Southampton, UK

5 Dept of Information and Communication Technology, University of Trento, Italy

Report Version: final
Report Preparation Date:
Classification: deliverable D2.1a
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)

Partners: IIIA(CSIC) Barcelona
Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento

Architecting Open Knowledge

David Dupplaw4, Uladzimir Kharkevich5, Spyros Kotoulas1, Adrián Perreau de
Pinninck2, Ronny Siebes1, and Chris Walton3

1 Faculty of Sciences, Free University Amsterdam, The Netherlands
{kotoula|ronny}@few.vu.nl

2 Artificial Intelligence Research Institute (IIIA-CSIC), Barcelona, Spain
adrianp@iiia.csic.es

3 The University of Edinburgh, Edinburgh, UK
cdw@ed.ac.uk

4 Electronics and Computer Science, University of Southampton, UK
dpd@ecs.soton.ac.uk

5 University of Trento, Povo, Trento, Italy
kharkevi@dit.unitn.it

Abstract. OpenKnowledge (OK) is an European research project. Its
aim is to implement a framework that allows sharing knowledge easily in
an open environment. Open in the sense that anyone can join at any time,
at low individual cost. The key idea is to share knowledge by focusing
on semantics related to interaction. Making semantic commitments in-
crementally at run time, instead of a priori. This paper describes the OK
system architecture. OK is a P2P framework on top of which all kinds of
services may be built. The core framework will offer services such as dis-
covery, publishing, interaction model interpretation, visualisation, and
matching.

1 Introduction

The existing, open Worldwide Web has been successful on a global scale because
the cost of participation at a basic level is low and the individual benefit of
participation is immediate, rising rapidly as more participants take part. The
same cannot currently be said about semantic based systems because the cost of
being precise about semantics for sophisticated components is prohibitively high
and the cost of ensuring an individual, absolute semantics for a component rises
rapidly as more participants take part. OK aims to break out of this deadlock
by focusing on semantics related to interaction (which are acquired at low cost
during participation) and using this to avoid dependency on a priori semantic
agreement; instead making semantic commitments incrementally at run time.
The “Open” in OpenKnowledge thus is significant in two senses:

– It assumes an open system, which anyone may join at any time.
– It assumes an openness to being joined, achieved through participation at

low individual cost

OpenKnowledge is a Peer-to-Peer network of knowledge providers. Each com-
puter in the network is a peer which can offer services to other peers. Since we
are designing a framework, it will only provide some core services which will be
shared by all the peers. This framework allows all kinds of application services
to be plugged on top. These plug-in applications are called OK Components
(OKC).

Interaction between OKCs is a very important part of the architecture.
Through a simple language, developers will be able to define the Interaction
Models (IM) that specify the protocol that must be followed in order to offer
or consume a service. OKCs are the ones in charge of playing the IM roles.
Since there is no ‘a priori’ semantic agreement (other than the IM), the match-
ing service will be used to automatically make semantic commitments between
the interacting parts. Interaction with the final user is needed too. Therefore,
visualisation of data and input from the user are a main part of the architec-
ture. Furthermore, in a P2P network where no centralized server maintains the
information respecting ‘who knows what’, a discovery service that allows OKCs
and other resources to be published and found also needs to be provided.

This paper aims at the simplest architecture that might possibly work. In
the spirit of agile software development, we are designing the architecture for
the first iteration. It will be a proof of concept, or prototype, to be able to
work on quickly. With early hands-on experience, we will be able to polish the
architecture in subsequent iterations.

The paper is organized as follows. Section 2 describes the different core ser-
vices of the OK architecture, their APIs, and the dependencies between them.
Section 3 gives a step-by-step account of the events that relate to each core
service, using as examples two main use cases. Section 4 explains the OK archi-
tecture’s contributions. Finally, section 5 deals with the improvements that are
planned to appear in subsequent iterations of the architecture.

2 Describing the Parts

The OK architecture consists of the set of modules seen in Figure 1. The arrows
define the dependency relations between modules. The different modules have
been separated into four different layers: The user layer contains the visualisation
module and the OK Components. The control layer is composed of the control
and context management modules. The service layer is where the core services
offered in OK are present. Finally, the network layer is the module used to join
the P2P network and interact through it.

The following subsections offer a complete description of the functionality
of each module, their API, and the dependencies on the functionality of other
modules.

2.1 OK Graphical User Interface (OK GUI)

The OK system must have a GUI so that users can interact with the framework.
The OK GUI is the entering point for users, it offers the basic functionality to

Fig. 1. OpenKnowledge Architecture

interact in OK. The OK GUI module does not have an API as the other modules
do, because it only responds to user events. The actions that the user can execute
through the OK GUI are described below:

– Search for Interaction Models - Users can search for Interaction Models in
the network by typing keywords and hitting the search button. All the In-
teraction Models found matching the required terms will be presented in a
list.

– Search for OK Components (OKC) - Much in the same way as users can
look for Interaction Models they can look for OKCs too. Another way to
look for OKCs is to select an Interaction Model and ask the system to look
for OKCs that can play any of its roles.

– Download OKC - Once a list of OKCs is shown to the user, the user can
choose to download any of the OKCs in the list. Once the OKC has been
downloaded the user may use the next two functionalities.

– Execute OK Component - A downloaded OKC is idle until it is executed.
After that point the OKC can start playing the Interaction Model with other
OKCs.

– Stop OK Component - In order for an OKC to remain idle after having been
executed, this functionality has to be employed.

2.2 OK Component

OK Components (OKC) are small applications that can be plugged into the
OK peers. An OKC can be replicated in many peers, and peers can contain

many OKCs. OKCs are made up of the following parts (see Figure 2): 1) The
Interaction Model (IM) describes, in LCC, how OKCs can interact with each
other. Each OKC will play one of the roles in the IM. 2) A Semantic Description
which contains information (in natural language or a Semantic-Web language
like OWL) like a description of what the component can do, who wrote it,
some pointers to peers that can play each role, mappings between datatypes,
a performance indication, etc... We assume for now that each OK-component,
at least has a set of keywords describing the functionality, which is needed by
the “default Component Discovery Service” (see section 2.6). 3) The Interaction
Code is the actual application code that will play one of the roles in the IM.

OK Components are saved on a peer and can be either idle or instantiated.
When an OKC is instantiated it is ready to play its role as defined in the IM.
Instantiated OKCs will play the IM with other instantiated OKCs whose roles
are compatible.

Fig. 2. OpenKnowledge Component

Interaction Model Our interaction models are effectively templates that OKCs
follow in order to interact successfully. Each model defines a pattern of interac-
tion that is designed to accomplish a specific goal. For example, we can readily
construct a book purchasing interaction model, which defines the acceptable se-
quences of interactions that may be performed to purchase a book. Each inter-
action model is parameterised by roles, which identify the different participants
in the interaction. For example, our book purchasing model would likely be pa-
rameterised with buyer and seller roles. Every OKC is assigned a role for an
interaction model, which identifies the appropriate interactions that they should
perform.

Interaction Model Syntax Our interaction models will be defined in the
Lightweight Coordination Calculus (LCC) [?]. This is a language designed specif-
ically for expressing Peer-to-Peer (P2P) interactions within multi-agent systems.
The expressive power of LCC makes it ideal for our purposes here, as we are
attempting to define interactions between independent components. However,
the key feature of LCC is that it has a formal semantics, which is based on pro-
cess calculus. This will enable us to prove properties about our interactions (e.g.
related to security and trust), and to verify the correctness of our interaction
models [?]. The formal basis is the primary reason that we have chosen to use
LCC over more popular languages, such as WS-Coordination, BPEL4WS, and
the OWL-S process model. Nonetheless, we intend to define translations from
these languages into LCC as future work.

The abstract syntax of LCC is presented in Figure 3. In our implementation
we will use a concrete XML-based syntax. The schema for this XML syntax has
yet to be fixed, but it will likely follow the same design as the MAP variant of
the LCC language [?]. We use the abstract syntax here as it is useful to explain
the language without the extra syntactic baggage of XML.

Framework := {Clause, . . .}
Clause := Agent :: Dn
Agent := a(Type, Id)

Dn := Agent |Message | Dn then Dn | Dn or Dn | Dn par Dn | null← C
Message := M ⇒ Agent |M ⇒ Agent← C |M ⇐ Agent | C ←M ⇐ Agent

C := Term | C ∧ C | C ∨ C
Type := Term

M := Term

Where null denotes an event which does not involve message passing; Term is a struc-
tured term and Id is either a variable or a unique identifier for the agent.

Fig. 3. Abstract Syntax of LCC.

There are five key syntactic categories in the definition, namely: Framework,
Clause, Agent, Dn (Definition), and Message. These categories have the fol-
lowing meanings. A Framework, which bounds an interaction in our definition,
comprises a set of clauses. Each Clause corresponds to an agent, which is the
name that we give to an interacting component. Each agent has a unique name
a and a Type which defines the role of the agent. The interactions that the agent
must perform are given by a definition Dn. These definitions may be composed
as sequences (then), choices (or), or in parallel (par). The actual interac-
tions between agents are given by Message definitions. Messages involve sending
(⇒) or receiving (⇐) of terms M from another agent, and these exchanges
may be constrained by C. These different kinds of operations are illustrated as
graphs in Figure 4.

Fig. 4. LCC Operations.

The LCC language ensures coherence of interaction between agents by im-
posing constraints relating to the messages they send and receive in their chosen
roles. The clauses are arranged so that, although the constraints on each role
are independent of others, the ensemble of clauses operates to give the desired
overall behaviour.

a(r1, A1) :: offer(X) ⇒ a(r2, A2) ← p(X) then accept(X) ⇐ a(r2, A2)
a(r2, A2) :: offer(X) ⇐ a(r1, A1) then accept(X) ⇒ a(r1, A1) ← q(X)

As an example, the above LCC fragment places two constraints on the vari-
able X: the first (p(X))is a condition on the agent in role r1 sending the message
offer(X) and the second (q(X)) is a condition on the agent in role r2 sending
message accept(X) in reply. By (separately) satisfying p(X) and q(X) the agents
mutually constrain the variable X. Further details on the actual meaning of the
LCC constructs is given in section 2.2.

Interaction Model Semantics The behaviour of an agent in a given role
is determined by the appropriate LCC clause. Figure 5 gives a set of rewrite
rules that are applied to give an unfolding of a LCC clause Ci in terms of
protocol P in response to the set of received messages, Mi, producing: a new
LCC clause Cn; an output message set On and remaining unprocessed messages
Mn (a subset of Mi). These are produced by applying the protocol rewrite rules
above exhaustively to produce the sequence from i to n:

〈Ci
Mi,Mi+1,P,Oi−−−−−−−−−→ Ci+1, . . . Cn−1

Mn−1,Mn,P,On−−−−−−−−−−→ Cn〉

We refer to the rewritten clause, Cn, as an expansion of the original clause, Ci

and write expanded(Ci,Mi,P, Cn, On) when this expansion is performed. In the
next section we describe how this basic expansion method is used for multi-agent
coordination.

The following ten rules define a single expansion of a clause. Full expansion
of a clause is achieved through exhaustive application of these rules. Rewrite 1
(below) expands a protocol clause with head A and body B by expanding B to
give a new body, E. The other nine rewrites concern the operators in the clause
body. A choice operator is expanded by expanding either side, provided the other
is not already closed (rewrites 2 and 3). A sequence operator is expanded by
expanding the first term of the sequence or, if that is closed, expanding the next
term (rewrites 4 and 5). A parallel operator expands on both sides (rewrite 6).
A message matching an element of the current set of received messages, Mi,
expands to a closed message if the constraint, C, attached to that message
is satisfied (rewrite 7). A message sent out expands similarly (rewrite 8). A
null event can be closed if the constraint associated with it can be satisfied
(rewrite 9). An agent role can be expanded by finding a clause in the protocol
with a head matching that role and body B - the role being expanded with that
body (rewrite 10).

Interaction Code The Interaction Code is executed whenever the IM comes to
a point where a constraint needs to be fulfilled, values are needed for variables,
or a path taken when a choice point is reached. The code will be executed by
the Control Manager whenever the Interpreter demands it. Code is optional,
that way IMs can be shared between peers without the code that plays its roles.
When the code is present, the Interaction Model will also contain information
as to what role the code can play.

The interaction code must contain the following functions:

– Constraint functions - Each of the constraints in the Interaction Model must
be satisfied by the OKC code. When one of the constraints is found which
cannot be satisfied automatically, the corresponding function in the interac-
tion code will be called to satisfy the constraint.

– Function for choice points - LCC allows for choices in the Interaction Model.
When one of these choice points is reached it is the interaction code that
will have to choose.

– Function for choosing variable values - At some points in the Interaction
Model, variables are used that can contain any value (most times it will be
restricted to a given set of values). It is the code in the OKC that must
choose what value to use. When one of these variables is found, the function
will be called that chooses the appropriate value.

2.3 Control Manager

The control manager is the module that manages the whole interaction process.
It serves as a mediator between the services layer, the context management,
and the user layer. Most of the time it will be receiving calls from other mod-
ules and redirecting them to the appropriate module, without much computation

A :: B
Mi,Mo,P,O−−−−−−−−→ A :: E if B

Mi,Mo,P,O−−−−−−−−→ E

A1 or A2
Mi,Mo,P,O−−−−−−−−→ E if ¬closed(A2) ∧

A1
Mi,Mo,P,O−−−−−−−−→ E

A1 or A2
Mi,Mo,P,O−−−−−−−−→ E if ¬closed(A1) ∧

A2
Mi,Mo,P,O−−−−−−−−→ E

A1 then A2
Mi,Mo,P,O−−−−−−−−→ E then A2 if A1

Mi,Mo,P,O−−−−−−−−→ E

A1 then A2
Mi,Mo,P,O−−−−−−−−→ A1 then E if closed(A1) wedge

A2
Mi,Mo,P,O−−−−−−−−→ E

A1 par A2
Mi,Mo,P,O1∪O2−−−−−−−−−−−→ E1 par E2 if A1

Mi,Mn,P,O1−−−−−−−−→ E1 ∧
A2

Mn,Mo,P,O2−−−−−−−−−→ E2

C ← M ⇐ A
Mi,Mi−{M ⇐ A},P,∅−−−−−−−−−−−−−−→ c(M ⇐ A) if (M ⇐ A) ∈Mi ∧

satisfy(C)

M ⇒ A ← C
Mi,Mo,P,{M ⇒ A}−−−−−−−−−−−−−→ c(M ⇒ A) if satisfied(C)

null ← C
Mi,Mo,P,∅−−−−−−−→ c(null) if satisfied(C)

a(R, I) ← C
Mi,Mo,P,∅−−−−−−−→ a(R, I) :: B if clause(P, a(R, I) :: B) ∧

satisfied(C)

A protocol term is decided to be closed, meaning that it has been covered by the
preceding interaction, as follows:

closed(c(X))
closed(A or B) ← closed(A) ∨ closed(B)
closed(A then B) ← closed(A) ∧ closed(B)
closed(A par B) ← closed(A) ∧ closed(B)
closed(X :: D) ← closed(D)

satisfied(C) is true if C can be solved from the agent’s current state of knowledge.
satisfy(C) is true if the agent’s state of knowledge can be made such that C is satisfied.
clause(P, X) is true if clause X appears in the dialogue framework of protocol P, as
defined in Figure 3.

Fig. 5. Semantic Interpretation of LCC.

involved. It serves as a dynamic interface for different modules that have to inter-
act with each other. It also knows the structure of the complete peer interaction
process, which it guides by delegating to other modules.

The control manager will manage the interaction process between the other
modules in order to fulfill the OK functionality. The architecture is susceptible
to change quite a bit during this phase of the project. The changes are necessary
since we are exploring what the functionality of each module should be. In order
to have greater flexibility, the control manager isolates each module by having
only an interface to it. Most modules in the OK architecture have dependencies
to other modules. Since these dependencies are mediated by the control manager,

the changes to any module’s interface will only affect the control manager leaving
other modules unaffected.

The functionality of this module is provided by the API in figure 6. The
API offers operations for searching OKC on the net, or getting a list of the ones
stored locally. It also has operations for downloading, starting, and stopping
OKCs. All of this functionality will be used by the OK GUI module. There are
also operations that will be used by the IM Interpreter to communicate with the
OKCs; the chooseBranch, satisfyConstraint, fillVariables, and newMessage are
operations that will be forwarded to the OKC involved in the interaction. The
getLocalOKCs operation may also be used by the Discovery Service when other
peers are looking for OKCs on the network.

public interface ControlManager

{

// Delegated to Discovery

public OKC_Id[] searchOKCs(String query);

public OKC_Id[] getLocalOKCs(String query);

public OKC downloadOKC(OKC_Id component);

// Delegated to IM Interpreter

public void startOKC(OKC_Id component);

public void stopOKC(OKC_Id component);

// Delegated to OKCs

public Branch chooseBranch(OKC component, Branch[] options);

public Object satisfyConstraint(OKC component, Constraint constraint);

public Binding[] fillVariables(OKC component, Variable[] variables);

public void newMessage(OKC component, Message message, Type type);

}

Fig. 6. Control Manager Interface Definition.

2.4 Context Manager

When an OKC interacts with other OKCs, some information needs to be saved
so that the peer can manage the interaction. Some of the information will be:
the information related to the OKCs it is interacting with (peer id, reliability,
etc...), the point/state the conversation is in, the common mappings used during
the interaction, the values of the bindings in the LCC protocol, the path the
conversation has followed, etc... Some of this information is perishable, and need
not be retained for further interactions. Other parts of the context will be useful
in subsequent interactions and will be saved for that purpose.

The functionality of this module is simple (see Figure ??). It contains func-
tions to update or add context values, and functions to retrieve and search the
context. There are two writing functions: One for saving transient objects that
will be erased when the actual interaction is finished, and another one for saving
objects permanently. In both cases the parameters to the save functions are the
same; the OKC and the Interaction Id in which the object is being used, and the
actual object to be saved. The second set of functions is for retrieving objects,
they return a list of Objects that match the search parameters; when the OKC
and InteractionId parameters are null, the search will look for the objects saved
for any OKC and InteractionId, otherwise the objects returned must match the
given OKC and InteractionId. The Query parameter is a string specifying search
restrictions. The Dates parameter indicates the interval of dates between which
objects will be searched. Finally, the Type parameter indicates the type of Object
to be searched (mapping, context attribute, variable binding, ...)

public interface ContextManager

{

// Storing data in context

public void saveTransient(OKC component,

Interaction interaction, Object data);

public void savePermanent(OKC component,

Interaction interaction, Object data);

// Search data from context

public Object[] search(String query, OKC_Id component,

Interaction interaction, Type type);

public Object[] search(String query, OKC_Id component,

Interaction interaction, Type type);

}

Fig. 7. Context Manager Interface Definition.

2.5 Visualiser

Visualisation of data is very important in any system as without it no results can
be provided to the user. However, it is also important in OpenKnowledge to allow
interaction with the user, and visualisation of the execution of an interaction
model is important for users to understand what part of the interaction model
is being played.

Interaction Visualiser During the execution of an interaction model, various
constraints within the model are satisfied by automatic means, either directly or
through some ontological matching that allows the constraints to be satisfied.
However, there are cases when the constraints are unable to be satisfied by
automatic means and in this case there are two options available to the system:

– User Interaction - Ask a user what to do.
– Give Up - Roll back the interaction model and try a different path through

the model.

Clearly if we are to provide user interaction, we need to consider how to
achieve this, understanding that the interaction model execution may currently
be on a remote peer. There is also the consideration of what we should ask the
user, and even which user we should ask. Let us examine these more closely in
the context of an example.

Let us take the example from the OK Manifesto paper [?] and imagine that
a user was executing an interaction model to find experts. When executing the
clause in equation 1 on some remote peer, this interaction model had a call to a
database, encoded as the get experts(X, D, S) constraint within the interaction
model.

a(expert finder, E) ::
request experts(X, D) ⇐ a(expert locator(X, D, L), C) then
specialists(X, D, S) ⇒ a(expert locator(X, D, L), C)← get experts(X, D, S)

(1)
This would lead to some code associated with the OK Component (see section

2.2) being executed that would make this database call. However, during the
execution of this code the database did not respond and so the constraint could
not be satisfied automatically. Therefore, a user must be consulted.

To summarise, the constraint that could not be satisfied was designed to
populate a list of people’s names with names of experts for some given discipline
and the user who executed the interaction model was attempting to find the
names of those experts. When the constraint satisfaction fails the system will
ask a user on the current peer. As the current peer is providing the knowledge
for the constraint satisfaction, it may be pragmatic to assume that a user on
that peer will have some knowledge of the roles their peer is able to provide.
However, it could be that the peer providing the role of expert finder will not
have a user interaface having been setup as a headless server.

For the first prototype, we will assume the following:

– A user is always present at the peer that has to solve the constraint
– This user will be able to provide answers to unsatisfiable constraints

The control manager will identify when a constraint is not satisfiable. When
it has detected such a case, it will invoke the visualisation routine to provide user
interaction. Because we are considering only the simplest case, the API for the

interaction routines will be very simplistic. A discussion of how the visualisation
routines may be extended to provide much more flexibility is provided in section
5.

To explain the API we shall consider the example above; get experts fails.
The error handling function (from the LCC interpreter) is handled by calling
the visualiser. The function for the visualiser is:

void visualise(Component p, Class c, Context x) (2)

This will ask the user to introduce the date needed asking for an input
of type c using the context x. The context may be used to provide a better
visualisation, although in the early prototype this may simply contain the name
of the constraint that was unsatisfiable so that the visualisation may at least
label the input boxes.

During the time that the visualisation routine is being executed (or at least
being waited upon), the peer that was unable to satisfy the constraint must wait
until the user fills the visualisation result.

As the visualisation is completed (e.g. user presses “Submit”) the info will
be sent back to the OKC who requested the visualisation. The interaction model
will continue as if the data had been returned by the OKC.

Using a single method to provide the visualisation on any peer provides the
simplest possible integration with other parts of the system. It still relies heavily
on support in the controller and the IM interpreter.

2.6 Discovery Service

Ronny and Spyros are in charge of this section
The Discovery Service takes care of storing OK-components and peer de-

scriptions. In this way, given a query, the Discovery Service can return OK-
Components that match the query. Also, it is meant to be able to return peers
that are able to fulfill roles described in the Interaction Models which is part of
an OK-Component of interest. To keep things modular, we separate these two
different functionalities into a Component Discovery Service and a Peer Discov-
ery Service. Both Discovery services get their knowledge about the components
via publish activities, sent by peers. For example, if a user made designed a com-
ponent, it can send it via the OK-system to a Component Discovery Service.
We plan to make this Service completely distributed so that it stays scalable. To
solve the bootstrap problem, we decided that in our default client6, we install
some standard services, like the two Discovery services, on each peer. The user
itself may decide if (s)he actually wants to host such a service that plays a role
in an default interaction model.

Component Discovery Service The core functionality of the Component
Discovery Service is to match queries with OKCs. Thus, the role of this service
is to receive a query and return a set of pointers to OKCs.
6 http://www.openk.org/downloads

public interface DiscoveryService

{

// Finding and publishing OKC

public OKC_Id[] getComponent(String description);

public boolean storeComponent(OKC component);

// Search data from context

public PeerId[] getPeers(OKC_Id component, RoleId role);

public PeerId[] search(String Description);

public boolean registerPeer(OKC_Id component, RoleId role, PeerId peer);

public boolean registerPeer(String description, PeerId peer);

}

Fig. 8. Discovery Service Interface Definition.

The programmers interface of this service can be seen in figure 8:

– getComponent Returns OKC IDs matching the description provided. For now,
the description is a set of keywords, which semantically will be matched against
the descriptions of the components stored at the service.

– storeComponent Stores a Component in the CDS. Returns true if it succeeds,
false if not. Note that we do not say anything about the implementation. It could
be that the service runs on one machine, or that it is completely distributed over
many. Actually, we will do the latter.

Peer Discovery Service The core functionality of the Peer Discovery Service
is to match roles of OKCs with services running on peers. Thus, the role of this
service is to receive a role description together with the Interaction model and
return a set of pointers to available OKCs. We plan to write two different ways
how peers register themselves at a PDS:

– by component- and role identifier : the user of a peer or the peer itself selects
the role(s) it wants to play in a specific component. Given that components
and roles all have unique identifiers, the PDS will contain a set of triples
containing the peerID, componentID, roleID. This is a very simple and robust
solution, however it is less flexible then the following, more complex solution.

– by peer description: the user of a peer or the peer itself describes its capa-
bilities (i.e. the functionalities of the services that it provides) by a semantic
description, which in our case will be a simple set of keywords. In essence this
will be identical to the process happening when components are published
at a CDS.

The interface of this service is as follows:

– getPeers Returns peerIDs that subscribed to the RoleID from a component
identified by the ComponentID.

– getPeers Returns peerIDs matching the Description provided. For now, the
description is a set of keywords, which semantically will be matched against the
descriptions of the components stored at the service.

– registerPeer Here, a peer, identified by its PeerID, registers itself to play a role
in a certain component, respectively identified by the RoleID and ComponentID.

– registerPeer Here, a peer registers its ’expertise’ via a Description (in our case
a set of keywords). Returns true if it succeeds, false if not.

2.7 Interaction Model Interpreter

As previously noted, interaction models are an important part of our archi-
tecture. These models permit seperately-defined Open Knowledge Components
(OKCs) to interact together at runtime. Without an interaction model, we would
be limited to applications consisting of a single OKC, or a hard-wired collection
of OKCs. Using interaction models, we can dynamically compose OKCs at run-
time. This gives us the ability to construct and execute applications on-the-fly,
and the flexibility to alter these applications as necessary.

The interaction model interpreter is the key to enabling different OKCs to
interact. In our architecture, each peer has its own interpreter. This interpreter
is responsible for handling the interactions for all the OKCs in that peer. The
interpreter takes an interaction model as input and performs the appropriate
actions for the OKC as defined in the model. These actions are dependent on
the role of the OKC and may involve sending and receiving messages, perform-
ing computations, and making decisions. If the interaction model is properly
designed, and the OKCs are able to interact, then the interactions will lead to
the desired outcome.

It should be clear from our discussion that the interaction model interpreter
plays a crucial role in the construction of applications for the OK architecture.
Consequently, we have put a lot of effort into the representation and interpre-
tation of these interaction models. In particular, we have previously provided
a formal syntax and semantics for the interaction models, so that they can be
defined and interpreted without ambiguity. In the remainder of this section we
describe the interface to the interaction model interpreter. This is the interface
to the module that will parse the Interaction Models, (for the syntax and seman-
tics see sections 2.2 and 2.2) apply the rewrite rules and demand the necessary
operations to be executed by the OKC.

Interaction Model Interface We have now defined how the interaction model
interpreter will operate. To recap, this interpreter will accept an interaction
model defined using an XML-variant of the LCC syntax that we have presented.
The interpreter will then evaluate this model using the formal rewrite rules
that we have described. These rules define precisely when messages should be
sent and received between components, and the flow of control that will result in

these message exchanges. The interpretation process will also involve performing
computation, which is specified by the constraints in our interaction models.

To complete the definition of the interpreter, it remains to define the interface
to the interpreter, so that it may be connected with the other facilities described
in this document. This interface is very straightforward, and is shown as a Java
interface definition in Figure 9.

public interface Interpreter

{

// Components managed by the peer

public void setComponent(Component comp) throws ComponentError;

public void removeComponent(String name) throws ComponentError;

public Component getComponent(String name);

public List<Component>[] getComponents();

// Models associated with components

public void setModel(Component comp, Model model) throws ModelError;

public void removeModel() throws ModelError;

public Model getModel();

// Roles played by peer inside each component

public void setRole(Component comp, Role role) throws RoleError;

public void removeRole(Component comp, String name) throws RoleError;

public List<Role>[] getRoles(Component comp);

// Execution of components

public void startInterpreter(Component comp) throws ExecError;

public void stopInterpreter(Component comp) throws ExecError;

public Status getStatus(Component Comp);

public void setTimeout(Component comp, int timeout);

}

Fig. 9. Interaction Model Interpreter Interface Definition.

Our interface defines the methods that comprise the interpreter, and their
types. There are four sets of operations in this interface, which have the following
purpose:

1. As previously noted, a single peer can interact simultaneously with a num-
ber of different OKCs. Thus, the first set of methods are used to managed
precisely the components that are associated with the peer. New compo-
nents can be registered with setComponent, and old components can be
removed with removeComponent. We can also retrieve all of the components
by getComponents, or a single named component with getComponent.

2. The second set of operations allow us to manipulate the interaction models
that will be interpreted. Each OKC will be associated with a single specific
interaction model. We can assign an interaction model to a component with
setModel, retrieve the model with getModel, and remove the model with
removeModel.

3. Before we can interpret an interaction model, we must assign components
to the various roles within the model. This is accomplished by the third set
of methods. The role that the component will take within the interaction
model is assigned with setRole, and cleared with removeRole. We can also
obtain a list of possible roles with getRoles.

4. The final set of operations enable us to interpret the interaction model as-
sociated with a specific component. The interpreter can be started with
startInterpreter and stopped with stopInterpreter. We can also query
the interpreter at any time, to find the state of the interaction using getStatus.
Finally, we can adjust the timeout value (seconds) for the receipt of mes-
sages with setTimeout. We note that the interface does not give much detail
about the state of the interaction. This is given by the interaction visualiser
that we have previously described.

2.8 Ontology Matching Service

The Ontology Matching Service solves the semantic heterogeneity problem among
different knowledge representations. This service offers match routines which pro-
duce mappings between the nodes of the graph-like structures that correspond
semantically to each other. This functionality is exploited by Control Manager
in at least three different phases:

– Role matching deals with the semantic heterogeneity in a role description
(e.g. the matching of roles: expert finder and person finder).

– Term matching deals with the structural heterogeneity in a role descrip-
tion (e.g. the matching of methods: get address (Full Name) and get address
(Name , Surname)).

– Query/Answer matching deals with the semantic heterogeneity arising from
the statement of a query and the values returned in its answers (e.g. the
matching of needed for interaction module operation get address (’Stephen
Salter’) and the operation get address (’Salter, Stephen’) that a particular
peer can actually perform).

In order to solve these problems Ontology Matching Service offers the inter-
face in figure 10.

We call the former routine string match routine and the later one object
match routine. These routines provide a unified way to deal with different types
of heterogeneity. The string match routine takes two strings, automatically rec-
ognizes implicitly described structures inside them, and produces the semantic
relations between these structures in the form of mapping elements (MapEle-
ment[]). A mapping element (ME) is a 5-tuple < IDij, Ni,Nj,R, C > where

public interface MatcherService

{

// Matching methods

public MapElement[] match (MapElement[] previous,

String source, String target)

public MapElement[] match (MapElement[] previous,

Object source, Object target, String type)

}

Fig. 10. Ontology Matcher Interface Definition.

IDij is a unique identifier of the given mapping element; Ni is the i-th node of
the source structure; Nj is the j-th node of the target structure; R specifies a
semantic relation (e.g. more or less general, equivalent to, disjoint from) which
may hold between the concepts at nodes Ni and Nj; and C is numerical coeffi-
cient between 0 and 1 showed plausibility of ME. The object match routine takes
source and target structures as Objects and a type of these Objects as the type
parameter. Then this routine produces an array of ME’s between the concepts
at nodes of source and target structures which are hidden by the Objects. In the
case when the given structures have been already partially matched (i.e. there is
a subarray of MÉıs), both routines may reuse this information (pME parameter
in the routines definition) in order to produce rest of mappings faster.

In the case of Role Matching the LCC description of role might be represented
as a plain text or as a java object. The plain text is matched by the string match
routine. The object match routine is used to match java objects. A term in
the Term Matching could be presented either as text and be processed by the
string match routine or as a term with context (Ctx) in the form of object <
Ctx, Term > and be processed by the object match routine. The Query/Answer
matching only exploits the string match routine.

The Ontology Matching Service works as independent service and does not
exploit any functionality from other services.

2.9 Network Service

This module is the abstraction layer to the communication channel. It has been
decided that the communication channel will be implemented with JXTA. JXTA
is a framework for P2P communications which provides the functionality needed
to build P2P applications without having to worry much about the network
structure.

The network functionality can be divided into the following blocks (see Figure
11): One with the functionality to manage connections between two peers (this
is between two peer modules), with one operation to create a connection and

another one to close it. Another block with operations for sending and receiving
messages over a connection. Finally, a block with operations to manage network
groups; create, join, leave, and get a list of group members.

public interface NetworkService

{

// Managing connections

public OKConnection connect(Module module, PeerId peer);

public void close(OKConnection connection);

// Message passing

public void send(Message message, OKConnection connection);

public void receive(Message message, OKConnection connection);

// Group management

public GroupId createGroup(String description);

public void joinGroup(GroupId group, Module module, PeerId peer);

public void leaveGroup(GroupId group, Module module, PeerId peer);

public MemberId[] getMembers(GroupId group);

}

Fig. 11. Network Service Interface Definition.

3 Tying it together

In order to understand how the modules of the architecture fit together, two use
cases are defined in this section. For each one of them, the sequence of events
in the use case are seen. The first events are those started by the end user, they
propagate to events from one module to another (usually in the form of function
calls).

The use cases show how a OK user may find interesting videos through Open
Knowledge. This motivation gives place to two subsections: 1) the user will need
to find OKCs in the net that suit his needs and will install the one he likes best,
2) he will then use the new OKC in his computer to find the videos he wants.

3.1 Find and Download OK Components

In this first use case, the user wants to find videos through the OK network. So
he looks for OKCs that allow him to search and download videos. Once the user
finds an OKC that he likes, he downloads it into its local OKC repository.

– The user starts the OK Graphical User Interface (OK GUI).
– The OK GUI shows the search panel.
– The user types in the search preferences. This can consist of a text entry

with ”Video Download”.
– The user clicks the ”search” button.
– The OK GUI executes the searchOKCs operation in the Control Manager

Module.
– The Control Manager (CMgr) redirects the search preferences to the Dis-

covery Service by executing its getComponent operation.
– The Discovery Service (Dvry) looks for local resources that match the search

preferences. It runs its distributed algorithm for search through the network
of peers.

– At this point remote peers are involved in the search process through their
own Discovery Service (RDvry).
• The RDvry receives a query from the Network Service. The query has

information about the kind of OKCs to return.
• The RDvry asks the Remote Control Manager (RCMgr) to search for

local OKCs that match the query. This is done through the RCMgr
getLocalOKCs operation.
• For each OKC stored locally at that peer its description is passed to the

Remote Matching Service (RMat) to see if it matches the query. The
match operation is used for this purpose.
• All the OKCs whose Semantic Description matches the query terms are

returned to the LDvry.
• The LDvry sends the list of local OKCs to the originating peer through

the Network Service.
– The LDvry gathers a list of all the resources matching the original query by

using the previous procedure with as many remote peers as needed.
– Dvry returns the list of OKCs to the CMgr who returns it to the OK GUI.
– The OK GUI shows a list of all the returned resources to the user.
– The user selects the OKC in the list that it likes best.
– The user clicks on the ”download” option.
– The OK GUI executes the downloadOKC method of the CMgr.
– The CMgr redirects the call to the Dvry.
– The Dvry finds a peer that holds the resource and downloads it.
– The OKC is returned to the CMgr which saves it. This is done by calling

the storeComponent operation on Dvry.
– The Dvry publishes to the network the fact that it now holds this resource

too.

3.2 OK Component Interaction

This use case shows how the user can use an OKC. This use case happens once
the user has downloaded the OKC he likes for downloading multimedia. He then
uses the OKC to find multimedia through the OK network.

– The user has the OK GUI opened in front of him.
– The user clicks to see the local resources (could have used the search panel

too).
– The OK GUI executes the getLocalOKCs operation in the CMgr.
– The CMgr returns a list of all the OKCs stored locally.
– The OK GUI shows the list of local resources to the user.
– The user selects the OKC it wants to use (Multimedia Download OKC -

MMOKC).
– User selects to start executing the OKC.
– The OK GUI calls the startOKC operation in CMgr.
– The CMgr loads the OKC.
• The CMgr gets the MMOKC from the storage.
• The CMgr loads the MMOKC code.
• The MMOKC launches its user interface. We assume the user interface

contains a search panel and a list of results.
• The CMgr gets the MMOKC’s Interaction Model and loads it using the

setModel operation in the IM Interpreter (Int).
• The MMOKC can now start interacting with other OKCs in the network.

– The Int can do the following with the Interaction Model given to it. What
the Int does depends on the LCC code in the IM. Int accomplishes all the fol-
lowing functionality by calling the appropriate method of CMgr. The CMgr
will forward the call to the OKC involved in the interaction.
• Ask the OKC to choose what LCC branch to follow. CMgr’s choose-

Branch.
• Ask the OKC to check a constraint. CMgr’s satisfyConstraint.
• Ask the OKC to give values for unbound variables. CMgr’s fillVariables.
• Send or Receive messages from the network. In each case the CMgr is

informed of the message being sent or received, and the CMgr informs
the OKC.

– The user types the kind of multimedia it wants to search (Type: Video,
Search text: Madonna).

– The MMOKC fills in the gaps and constraints of the message typed by the
user.

– The Int asks CMgr for a list of peers it can play the IM with as searcher
– The CMgr redirects the petition to Dvry, by executing the getPeers opera-

tion.
– The Dvry searches for the peers that have a running copy of OKCs that can

play the role of searchee.
– The Dvry returns the list to the CMgr.
– The CMgr hands the list to the Int.
– The Int sends the message to all of the other peers.
– The remote peers are now involved:
• Remote Interpreter (RInt) receives the message.
• RInt checks if the message is a correct part of the IM.
• RInt redirects the message to the according Remote OKC (through the

RCMgr).

• ROKC does not understand some part of the message and asks its
RCMgr to find translations.
• RCMgr redirects translation query to RMat.
• RMat finds mappings to the terms.

– The protocol continues as long as the IM definition allows.
– Eventually the user may want to stop the MMOKC from running. It can

choose to do that through the OK GUI.
– The OK GUI will execute the stopOKC operation in CMgr.
– The CMgr will call the removeModel operation on Int and will unload the

MMOKC code.

4 Conclusions

The architecture in this paper is for a first prototype of the Open Knowledge
P2P platform for knowledge sharing. The platform uses a mix of technologies
in the research area, such as: Semantic Routing, Ontology Matching, Interac-
tion Modeling, and Visualisation technologies. These technologies are quite new.
Through this prototype we will be able to test these technologies in order to gain
a better understanding of how they can better fit together. With better under-
standing we will be able to modify the architecture to better suit our needs and
to add other technologies (see section 5) that will make it more user-friendly.

We have designed a system simple enough so that it will be built in a rea-
sonable amount of time. The platform built will provide the basic functionality
to make knowledge sharing possible. Each computer that acts as an OK peer,
will be able to provide services to other peers and use services from others in
the form of OK Components. OKCs will use the core services provided in the
architecture to interact with each other and accomplish the tasks the end user
desires.

5 Future Work

This section describes functionality that we want to have implemented in the
final version of the OK Architecture, but will not be present in the first prototype
version. The idea is to give pointers to the things that will be present in the next
versions of the architecture.

5.1 OK Component Library

The OK platform will be downloaded with the essential services needed to op-
erate. In future versions it will be bundled with some useful OK Components.
Nonetheless it is a good idea to maintain a server with an OKC library so that
OK users know where to find new OKCs and download them.

The Library will be hosted on a dedicated server (which may also act as a
OK peer) , but eventually the OKCs will be distributed among all the OK peers
and the dedicated server will not be needed.

5.2 Ambient LCC

For our initial prototype using LCC as the interaction language will do. But, as
applications get more complex, we will need to extend LCC. Ambient LCC is an
extension to LCC. This extension provides means to specify virtual spaces where
processes can take place (i.e. an ambient). Ambients may hold information such
as attribute/value pairs, and may also have other ambients inside. It will allow
to model a richer set of Interaction Models.

In future versions of the OK platform, the IM language will be Ambient LCC,
and the IM Interpreter will be modified accordingly.

5.3 Interaction Model Translation

LCC is not the only language available to define Interaction Models. We have
chosen LCC because of its simplicity and well established semantics. But we
do not want to close the door to other languages. Future versions of the OK
Architecture will allow the IM to be defined in other well-known languages such
as; WS-Coordination, BPEL4WS, OWL-S, or Electronic Institutions. In order to
allow this, we propose having a translator module that will translate Interaction
Models defined in these languages, into LCC.

It is also foreseen that a visual tool will be provided to aid in the specification
of Interaction Models. The visual composer will help users define IMs through
state diagrams, such as those in Electronic Institutions. The modeler will help
users manipulate IMs downloaded from OK and compose new ones.

5.4 Security, Trust and Reputation

An important part of any software platform is security. This has been omitted in
the first OK prototype, but it is intended for further versions. Security has been
studied in centralized systems, and to a great degree it has been accomplished
there. But security in distributed and open systems is a much harder task. Since
OK is both open and distributed, we need to look for a mechanism that will
work in this environment.

Trust and reputation will be used in OK as a distributed and social mech-
anism to ensure security. Further OK platform versions will be bundled with a
Trust and Reputation service that will inform its OKCs about other OKC and
peer reputation so as to avoid harmful interactions.

5.5 Automatisation

Since our aim for the first prototype is for the simplest thing that can possibly
work, the users will have to take part in a lot of decisions. In order for OK to
gain acceptance, the required input from the user must be kept to a minimum.

Some of the processes that will be automated are; peer selection, IM selection,
term matching, and filling values for messages templates.

5.6 Interaction Model Verification

LCC allows for a great degree of freedom when defining an Interaction Model.
This freedom does not prevent coding IMs that are not consistent across the
different roles, or that may have deadlocks. One solution for this is to verify that
the IMs fulfill the properties needed.

We plan to implement an IM verifier. The verifier will insure that interaction
models are correct. It will not be used during the interactions, but will be useful
when creating a new interaction models or when choosing one to be downloaded
from the network.

5.7 Approximate and Partial Ontology Matching

P2P network is a highly dynamic, real-time environment where peers are free to
do whatever they wish. Dynamic nature of peers imply that mappings, which
have been established between concepts at nodes of source and target ontologies,
often might become only an approximation of real mappings, in the case when
concepts in matched ontologies were slightly changed, or even become partially
incorrect, in the case when these changes were more dramatic. Consequently
peers might have to live with approximate and incomplete mappings before such
links are recovered. Matching process is very costly and thus it is impractical to
establish complete and accurate mappings which will almost inevitable become
incomplete and approximate after a time. To deal with this situation we have to
find some balance between the matching performance and quality of matching
results.

The freedom of peers implies that different sources might choose to repre-
sent the same thing in different ways. The Ontology Matching solves this se-
mantic heterogeneity problem but it is not always a precise process and some-
times the inaccuracy of ontology matching cannot be entirely prevented: e.g.,
type of fire(Source, Risk level) is only an approximate match to the constraint
type of fire(Type). Source might be matched to Type with some level of ap-
proximation and Risk level might be ignored. So we are always interested in
cost-effective, approximate and/or partial matching which produce good enough
mappings at the present moment for the particular task.

5.8 Reusing Mappings

The process of matching is a costly one. Therefore the mappings that are re-
turned from this process are very valuable. It is interesting for OK to reuse
knowledge that has already been computed. Mappings used in previous inter-
actions are pieces of knowledge that can be stored for reuse. In future versions
we are planning to reuse those mappings that have been successfully used in
previous interactions. This means that not only must each peer be able to save
and search for previous mappings, but it must also be able to search for them
throughout the network. The Discovery Service will be in charge of discovering
useful mappings that will be given to the Matching Service so that it may reuse
them in order to avoid the costly process of calculating them.

5.9 Services as OKCs

In the first architecture prototype we are defining some of the basic services to be
implemented into the framework as hard-coded modules. Our intention for future
versions of the architecture is to go for a pure component-based approach. We
plan to have all the services be OKCs that will interact with each other through
Interaction Models as regular OKCs. This approach will give greater flexibility,
and will also allow OK users to create OKCs that can offer the same functionality
as the actual services, or even improve it.

If every service is an OKC, users may be able to search the OK network for
OKCs that can act as Ontology Matchers. They can then choose the one they
like best and use it. With a component-base approach each user will be able to
tune their peer to suit him best.

5.10 The Diagnostic Visualiser

The diagnostic visualiser is for visualising the interaction model progress as it is
being executed. This allows for a user to find where there are problems in the
system, as well as providing a nice way for them to understand how the system
is working while they wait for it to finish.

In the final version of OpenKnowledge, the visualisation may be best pre-
sented in the same way that the visual composer is presented, as it will be
familiar to the user and will avoid them having to learn multiple user interfaces.

The diagnostic visualiser will work by flagging in the initial context of the
instantiated interaction model that diagnostic visualisation is required. This will
force each component that receives the interaction model to send a message back
to the originating peer to inform it of the progress.

This functionality will require support in the controller and the contextual
manager for setting of the flag , and also support in the message queue processor
for intercepting the message. The controller will then call the diagnostic visualiser
to fire the appropriate message back to the originating peer.

The operation to fire the message will require a component p on some peer
(the originating peer in this case) to be sent the state of the interaction model,
encoded in some structure m. The originating peer will retrieve the message and
update its display.

