OpenKnowledge
FP6-027253

Plug-in Components

Coordinator: Paolo Besanal,
with contributions from
David Dupplaw?, Adrian Perreau de Pinnick?3

! University of Edinburgh
2 University of Southampton
3IIIA (CSIC) Barcelona

Report Version: final

Report Preparation Date: 21.12.2007

Classification: deliverable D1.3

Contract Start Date: 1.1.2006 Duration: 36 months

Project Co-ordinator: University of Edinburgh (David Robertson)
IITA(CSIC) Barcelona

Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento

Partners:



Abstract

Constraints in LCC protocol are preconditions on message sending,
and postconditions (possibly changing the peer internal state) on message
receiving.

The constraints do not specify how they must be solved: peers solve
constraints through plug-in components, called OKCs. An OKC exposes
methods that are mapped to constraints in protocols: the activity of
choosing to what interaction subscribe - with the aim of acting in the
interaction in a particular role - requires the comparison between the con-
straints of the roles in an interaction model and the methods in its repos-
itory of OKCs. The comparison process results in an evaluation of the
similarity between the protocol and the peers components, and if possible
in a set of adaptors between the constraints and the methods. Similarly,
adaptors are used by the OKC to access methods exposed by the peer (for
subscribing to other interactions, for example).

1 Introduction

The main objective of the OpenKnowledge project is to study an open, dis-
tributed system for sharing knowledge about processes. The development of
the kernel is an attempt of providing a working framework able to answer these
requirements.

The peers in the OpenKnowledge system share the descriptions of processes
in the form of Interaction Models: an Interaction Model is defined in Lightweight
Coordination Calculus [2], and contains a set of clauses for the various roles that
the peers can perform during an interaction. The peers exchange messages, and
a message can have constraints upon sending and reception.

The constraints are used to bridge between the interaction and the peers’
knowledge, either querying for values or changing the local state of the peer.
The success or the failure of a constraint is used to choose among different
possible paths in the interaction. In the fragment of interaction in figure 1, the
peer’s knowledge is first accessed to obtain what he wants, and then to verify if
the peer accepts the offers. Depending on the result of the last constraint, the
interaction can take two different paths, one in which an acceptance message is
sent, and another where a rejection is sent.

We need a technique to link constraints in Interaction Models to peers’
knowledge. Moreover, peers should be able to take part in many different inter-
actions, some of which may not have been considered when the peer was devel-
oped. Finally, as the system is open, it is impossible to assume that knowledge
is represented uniformly in interaction models and in peers.

2 Plug-in architecture

The first engineering decision taken is to link constraints to methods in the
peer code body. When a constraint needs to be solved, a method in the peer



a(buyer, B) ::

ask(X) = a(seller,S) — want(X)

then

of fer(X, P) < a(seller, S)

then
accept = a(seller, S) «— af fordable(X, P)
or
reject = a(seller, S)

Figure 1: The buyer clause from a simple purchase interaction model

is called. A constraint in LCC is a predicate, where some of its arguments
may be instantiated and others still to unify. The task of the method is to
instantiate arguments if possible, and to return true or false to indicate whether
the constraint was successfully satisfied. The method solving the constraint
want(X) will instantiate X with the product desired by the peer, while the
method solving af fordable(X, P) will either return true or false depending on
some local utility function. Constraints are solved by methods defined as:

boolean methodName(Argument Ay, ..., Argument A,,)

The link between the constraint and the method is provided by adaptors, as
we will see in Section 4.

The second engineering decision taken is to use a plug-in architecture for
the methods: initially peers do not have the methods in their code used for
solving constraints in interactions. The methods are in components, called
OKCs (OpenKnowledge Components), that can be added to the peer reposi-
tory of components. An OKC is a Java Archive (jar) file containing a class
extending the superclass 0KCFacadeImpl, that provides the methods for solv-
ing constraints. The jar file is used to contain auxiliary resources used by the
methods. Figure 2 shows the UML class diagram of an OKCFacade class.

3 Lifecycle of an OKC

3.1 Developing and Obtaining OKCs

The creation of the OKC jar file for a specific role in an Interaction Model can
be done through the OpenKnowledge GUI: once an interaction has been chosen
and a role has been selected, by clicking on “Create New OKC for Role” it is
possible to select the files to include in the OKC. The application automatically
generates the jar, with the correct manifest and okcinfo.xml files. Another
useful tool for generating OKCs is the WSDL20OKC application for accessing
web services: it receives the URL of a WSDL file and it automatically generates
the OKC able to call the web service. The operations listed in the WSDL file
are converted into methods in the OKC.



«datatype»
Argument OKCDescription

//// + newOKClnstance() : OKCFacade

«interface» _—
OKCFacade ,—

+ setParameter()
+ setParemeters()

OKCFac‘adelmpI
- parameters : int
+ setParameter()
+ setParameters()
+ getParameter()

InquirerOKC

+ ask(out word : Argument)
+ show(word : Argument, definition : Argument)

OracleOKC

+ define(word : Argument, out definition : Argument)

Figure 2: UML Class diagram for two example OKCs

Once an OKCs has been developed, it can either be kept private and installed
only on a restricted number of machines, or it can be published and shared on
the Discovery Service. A published OKC is described by a set of keywords that
other peers can use to find them querying the Discovery Service.

The . jar files are stored on the peer’s hard disk, and the peer keeps a record
of them as 0KCDescriptions in its local OKC repository.

3.2 Subscription to an Interaction Model

When a peer needs to perform a task it asks the Discovery Service [1] for a list
of Interaction Models matching the description of the task. Then, for each re-
ceived Interaction Model, the peer compares the methods in its OKCs with the
constraints in the entry role it is interested in. If the peer finds an Interaction
Model whose constraints (in the role the peer needs to perform) are covered by
the methods in its OKCs, then the peer can subscribe to that Interaction Model
in the Discovery Service. The subscription is handled by a subscription negotia-
tor and can be interpreted as an intention to participate in the interaction. The
subscription, through a subscription adaptor, binds the Interaction Model to a
set of methods in the OKCs in peer. A subscription can endure for only a single
interaction run or for many, possibly unlimited, interaction runs: a buyer will
likely subscribe to run a purchase interaction once, while a vendor may want to
keep selling its products or services.

An additional functionality for subscription, not yet included in system, is to
allow an interaction to specify the OKCs it requires, and let the peer download



A) Peer P1 has a task "tag" to perform

compare({im1,...,imn},{OKCL,...}) search(tag)

O3 o, OV /-
® <rl={P2,P3}
Discovery |- r2={}
Service .
of |

P1 ’Ms(tag,(,lele})
O

Ubscribeim
r2,p1 descripti
! riptio
P2 g

O isReady(IM )

ES)

Figure 3: Exchange of messages between peers and DS for subscription

them (given permission by the user and some threshold on the trust level for
the IMs and OKCs) in order to run the interaction.

3.3 Interaction bootstrap

When all the roles in the Interaction Model have subscriptions, the Discovery
Service selects a random peer as a coordinator. The coordinator bootstraps and
runs the interaction. The bootstrap involves first asking the peers who they
want to interact with, among all the peers that have subscribed to the various
roles, then creating a team of mutually compatible peers and finally - if possible
- asking the selected group of peers to commit to the interaction. Figure 4 shows
the exchange of messages between the peers, the coordinator and the Discovery
Service.
For a peer, committing to an interaction, implies the creation of an InteractionRunContext,

that receives the SubscriptionAdaptor from the SubscriptionNegotiator as
in Figure 5.

3.4 Interaction run

The run of the interaction is handled by the coordinator and the InteractionRunContext
of the involved peers. The coordinator peer runs the interaction locally: the
messages are exchanged between local proxies of the peers. However, when
the coordinator encounters a constraint in a role clause, it sends the mes-
sage solveConstraintMessage to the InteractionRunContext in the peer
performing the role. The message contains the constraint to be solved. The
InteractionRunContext asks the SubscriptionAdaptor the corresponding method
- found during the comparison at subscription time. The OKCs are instantiated
lazily: if the OKC that contains the method corresponding to the constraint
has not been instantiated yet within the context of the interaction, the class is
instantiated, and stored in the context. If the instance exists in the context, the
corresponding method is called dynamically. The method will use the adaptor

to access the elements of the arguments. The peer then sends back the message



B) Bootstrapping - phase 1: peers selection
IF IMi is ready

Coordinator

selectRandomCoordinator()

[©) selectPeers(lMi,{PI,PZ,P3))
©® selectedpeers(P1

evaluatePeers(IMi,{P1,P2,P3}) \ec! createCompatibleTeam
B se (P1->{P2},P2->{P1},P3->{P1} )

C) Bootstrapping - phase 2: commitment

IF can create mutually compatible team

evaluateCommitment(IMi)

evaluateCommitment(IMi)
@ askCommit(IMi)

Coordinator

Figure 4: Bootstrap of interaction: exchange of messages for the selection of
peers and commitment



«interface»
InteractionRunContext

Z}

SubscriptionNegotiatorimpl |

interactionModelID : int InteractionRunContextimpl
- Role : int - subscriptionAdaptor : SubscriptionAdaptor
_ descv:iption Lint - OKCFacadelnstances : OKCFacade

. o + handleMessage(msg : Message)
- adaptor : SubscriptionAdaptor >

-adaptor -§ub5tﬁ§tionAdaptor
SubscriptionAdaptor
- adaptors : ConstraintAdaptor

!

|
\ -adaptors

ConstraintAdaptor

Figure 5: UML class diagram of Subscription/ContextRun

D) Interaction Run
IF enough peers have committed

solve(constraint,

Run interaction locally,
between proxies of P1 and P2

solve(constraint) int)
@solveConstraint(constréint) i

constraintSolved(constraint

P2®

~/ Coordinator

Every time there is

a constraint to solve
in the roles performed
by P1 or P2

Figure 6: Interaction Run: exchange of messages between the coordinator and
the peers

SolveConstraintResponseMessage to the coordinator with the updated values
of variables and the boolean result obtained from satisfying the constraint.

4 Mapping Constraints to Methods

The matcher, described in [3], allows the OKCs and the Interaction Models
to be decoupled. The peer compares the constraints in the roles in which it is
interested with the methods in its OKCs and creates a set of adaptors that maps
the constraint in the roles to similar methods. In order to match constraints
and methods they both need to be semantically annotated.



4.0.1 Semantic Mark-up of Methods

The exchanged messages can contain complex structures. The structures can
be trees or lists. The structure of the arguments is defined in the semantic
annotation of the method, written using Java 5 annotations:

@MethodSemantic(

language=tag,

args={‘‘product (brand, name, cost(currency, value))’’,
“buyer (name, surname, address(street, postcode, city))’’}

)

public bool registerPurchase(Argument P, Argument B) {...}

The code inside the method can access the elements in the structure by path
(similarily to XPath):

System.out.println(P.getValue("/product[0]/cost[0]/value[0]’?)+
2% <¢ +

P.getValue("/product [0]/cost [0]/currency[0]°*))

The nodes in the path are coupled with an index, because there might be more
than one node of the same ontological type at the same depth. For example,
a parameter that contains a relationship can be a expressed as tree with two
identical children:

@MethodSemantic(

language=tag,
args={’friends(person,person)’})
public boolean add(Argument F){

System.out.println(F.getValue(‘““friends[0]/person[0]’’) + ¢ knows ”’
+F.getValue (““friends[0] /person[1]’"));

}

The elements of the structure are reached independently of how they are kept
in the exchanged messages: the adaptor between the constraint and the method
maps the elements in the arguments of the constraint to the elements in the
arguments of the method.

4.0.2 Lists

We have two possibilities: one is to only allow access to the lists through LCC
operators and recursion, the other is to use the indexes of the root elements:

@MethodSemantic (..., args={"[move(from,to,vehicle)]"})



product
brand--

‘ currency
buyer

purchaser
surname

name
surname
address

city

Figure T7: Adaptor between register(...) constraint and
registerPurchase(...) method

represents an argument that contains a list. To access the elements in the list,
the index of the root changes.

public boolean do(Arg A){
System.out.println(A.getValue("/move[2]/from[0]");
}

4.1 Adaptors

For example, the constraint in the following snippet of a protocol:
register(P,B) <- bought(P,B) <= a(buyer, ID)
where the constraint is defined as:

register (produce (make,name, cost, currency),
purchaser (surname, address, city, postcode))

will be mapped to the method in the OKC seen in the previous section with the
adaptor in Figure 7.

Allowing the code inside the method to access the elements without knowing
how they are actually structured in the message, decoupling de facto the protocol
from the components.

5 Access to the peer state

Some of the constraints are functional: they expect that the method in the
component, given a set of input arguments, will always unify the non instanti-
ated arguments with the same values, or will succeed or fail, independently of



the peer that has downloaded and executed the component. For example, the
constraint sort (List,SortedList) for sorting a list of elements should always
unify SortedList with the ordered version of List, even though different peers
may have OKCs that implement different algorithms for sorting it.

Other components work as bridge between the interaction model and the
peer local knowledge, and will unify non instantiated variables with values that
depend on the peer in which the OKC is running. For example, a constraint
price(Product, Price) expects that the corresponding method in the OKC
unifies the variable Price with the price assigned to Product by the peer, pos-
sibly accessing the database local to the peer: different peers may have different
prices for the same product. Similarly, in the emergency response scenario, the
firefighters are queried about their location when they need to satisfy the con-
straint at (Position): every firefighter will have a different location, and will
set Position with their local position.

Moreover, the same peer can be involved in many interactions simultane-
ously, and the peer local knowledge (or state) is changed by one interaction
and read in another. For example, a peer selling products will have the total
amount of available products reduced after each successful selling interaction.
For peer local knowledge, or internal state, we mean any element of information
that can persist over different interactions (and possibly be altered by them):
for example the database of products just described.

At the moment the OKCs are given the references, at instantiation time, of

the objects they need to use through the setParameter(..) and getParameter(...

methods: for example, the peer that runs the simulator in the emergency re-
sponse scenario is given the reference to the Prolog client that allows it to query
the Prolog environment in which the simulator is actually run.

In the planned development, the peer will expose a set of methods that
allow the OKCs to access its internal state, and the OKCs will expose the list
of methods in the peer they need to use. The same matching process that
takes place between the constraint and the methods in the OKC will take place
between the OKC and the peer exposed method, generating a set of adaptors
allowing the methods in the OKC to access the peer local knowledge.

The class implementing the 0KCFacade interface is annotated (via Java 5.0
annotations) with the semantic descriptions of the peer’s methods it needs to
use. When a peer downloads an OKC, the methods required by it are matched
against the methods exposed by the peer: if the matching is good enough (there
might be OKCs not compatible with a particular implementation of a peer),
then the result of comparison is an adaptor, similar to those between OKC
methods and constraints, that allow the OKC methods to access the elements
in the peer’s methods using its internal terminology.

The peer’s ontology is considered as local knowledge. The actual implemen-
tation of the ontology handler is up to the peer developers, but the OKCs -
if they need it - can access it through the same procedure of calling a set of
exposed methods.

10



5.1 Deferred Interactions

An interesting possibility is for the OKC method to ask the peer to run another
interaction in order to collect further information, or to obtain something asyn-
chronously. Starting another interaction can happen in two ways: implicitly or
explicitly.

In the implicit case, the peer is asked for further information, and it is up to
the peer to decide how to collect the information: it may already have it, and
answer directly, or it may decide to proceed with a new interaction to obtain
the information.

In the explicit case, the method can either tell the ID of the interaction
to perform to the peer, together with additional filter information for the sub-
scription and the bootstrap, or be more generic and tell the peer to search
an interaction using a set of keywords, and follow the standard subscription
procedure.

References

[1] S. Kotoulas and R Siebes. Deliverable 2.2: Adaptive routing in structured
peer-to-peer overlays. Technical report, OpenKnowledge.

[2] D Robertson. A lightweight coordination calculus for agent systems. In
Declarative Agent Languages and Technologies, pages 183-197, 2004.

[3] P Shvaiko, F. Giunchiglia, M. Yatskevitch, J. Pane, and P. Besana. Deliv-
erable 3.6: Implementation of the ontology matching component. Technical
report, OpenKnowledge, 2007.

11



