
OpenKnowledgeFP6-027253Plug-in ComponentsCoordinator: Paolo Besana1,with 
ontributions fromDavid Dupplaw2, Adrian Perreau de Pinni
k3

1 University of Edinburgh
2 University of Southampton

3IIIA (CSIC) Bar
elona

Report Version: �nalReport Preparation Date: 21.12.2007Classi�
ation: deliverable D1.3Contra
t Start Date: 1.1.2006 Duration: 36 monthsProje
t Co-ordinator: University of Edinburgh (David Robertson)Partners: IIIA(CSIC) Bar
elonaVrije Universiteit AmsterdamUniversity of EdinburghKMI, Open UniversityUniversity of SouthamptonUniversity of Trento
1



Abstra
tConstraints in LCC proto
ol are pre
onditions on message sending,and post
onditions (possibly 
hanging the peer internal state) on messagere
eiving.The 
onstraints do not spe
ify how they must be solved: peers solve
onstraints through plug-in 
omponents, 
alled OKCs. An OKC exposesmethods that are mapped to 
onstraints in proto
ols: the a
tivity of
hoosing to what intera
tion subs
ribe - with the aim of a
ting in theintera
tion in a parti
ular role - requires the 
omparison between the 
on-straints of the roles in an intera
tion model and the methods in its repos-itory of OKCs. The 
omparison pro
ess results in an evaluation of thesimilarity between the proto
ol and the peers 
omponents, and if possiblein a set of adaptors between the 
onstraints and the methods. Similarly,adaptors are used by the OKC to a

ess methods exposed by the peer (forsubs
ribing to other intera
tions, for example).1 Introdu
tionThe main obje
tive of the OpenKnowledge proje
t is to study an open, dis-tributed system for sharing knowledge about pro
esses. The development ofthe kernel is an attempt of providing a working framework able to answer theserequirements.The peers in the OpenKnowledge system share the des
riptions of pro
essesin the form of Intera
tion Models : an Intera
tion Model is de�ned in LightweightCoordination Cal
ulus [2℄, and 
ontains a set of 
lauses for the various roles thatthe peers 
an perform during an intera
tion. The peers ex
hange messages, anda message 
an have 
onstraints upon sending and re
eption.The 
onstraints are used to bridge between the intera
tion and the peers'knowledge, either querying for values or 
hanging the lo
al state of the peer.The su

ess or the failure of a 
onstraint is used to 
hoose among di�erentpossible paths in the intera
tion. In the fragment of intera
tion in �gure 1, thepeer's knowledge is �rst a

essed to obtain what he wants, and then to verify ifthe peer a

epts the o�ers. Depending on the result of the last 
onstraint, theintera
tion 
an take two di�erent paths, one in whi
h an a

eptan
e message issent, and another where a reje
tion is sent.We need a te
hnique to link 
onstraints in Intera
tion Models to peers'knowledge. Moreover, peers should be able to take part in many di�erent inter-a
tions, some of whi
h may not have been 
onsidered when the peer was devel-oped. Finally, as the system is open, it is impossible to assume that knowledgeis represented uniformly in intera
tion models and in peers.2 Plug-in ar
hite
tureThe �rst engineering de
ision taken is to link 
onstraints to methods in thepeer 
ode body. When a 
onstraint needs to be solved, a method in the peer2



a(buyer, B) ::
ask(X)⇒ a(seller, S)← want(X)
then

offer(X, P )⇐ a(seller, S)
then




accept⇒ a(seller, S)← affordable(X, P )
or

reject⇒ a(seller, S)



Figure 1: The buyer 
lause from a simple pur
hase intera
tion modelis 
alled. A 
onstraint in LCC is a predi
ate, where some of its argumentsmay be instantiated and others still to unify. The task of the method is toinstantiate arguments if possible, and to return true or false to indi
ate whetherthe 
onstraint was su

essfully satis�ed. The method solving the 
onstraint
want(X) will instantiate X with the produ
t desired by the peer, while themethod solving affordable(X, P ) will either return true or false depending onsome lo
al utility fun
tion. Constraints are solved by methods de�ned as:

boolean methodName(Argument A1, ..., Argument An)The link between the 
onstraint and the method is provided by adaptors, aswe will see in Se
tion 4.The se
ond engineering de
ision taken is to use a plug-in ar
hite
ture forthe methods: initially peers do not have the methods in their 
ode used forsolving 
onstraints in intera
tions. The methods are in 
omponents, 
alledOKCs (OpenKnowledge Components), that 
an be added to the peer reposi-tory of 
omponents. An OKC is a Java Ar
hive (jar) �le 
ontaining a 
lassextending the super
lass OKCFa
adeImpl, that provides the methods for solv-ing 
onstraints. The jar �le is used to 
ontain auxiliary resour
es used by themethods. Figure 2 shows the UML 
lass diagram of an OKCFa
ade 
lass.3 Life
y
le of an OKC3.1 Developing and Obtaining OKCsThe 
reation of the OKC jar �le for a spe
i�
 role in an Intera
tion Model 
anbe done through the OpenKnowledge GUI: on
e an intera
tion has been 
hosenand a role has been sele
ted, by 
li
king on �Create New OKC for Role� it ispossible to sele
t the �les to in
lude in the OKC. The appli
ation automati
allygenerates the jar, with the 
orre
t manifest and ok
info.xml �les. Anotheruseful tool for generating OKCs is the WSDL2OKC appli
ation for a

essingweb servi
es: it re
eives the URL of a WSDL �le and it automati
ally generatesthe OKC able to 
all the web servi
e. The operations listed in the WSDL �leare 
onverted into methods in the OKC.3



«datatype»
Argument

InquirerOKC

+ ask(out word : Argument)
+ show(word : Argument, definition : Argument)

OKCDescription

+ newOKCInstance() : OKCFacade
«interface»
OKCFacade

+ setParameter()
+ setParemeters()

OracleOKC

+ define(word : Argument, out definition : Argument)

OKCFacadeImpl
� parameters : int
+ setParameter()
+ setParameters()
+ getParameter()

Figure 2: UML Class diagram for two example OKCsOn
e an OKCs has been developed, it 
an either be kept private and installedonly on a restri
ted number of ma
hines, or it 
an be published and shared onthe Dis
overy Servi
e. A published OKC is des
ribed by a set of keywords thatother peers 
an use to �nd them querying the Dis
overy Servi
e.The .jar �les are stored on the peer's hard disk, and the peer keeps a re
ordof them as OKCDes
riptions in its lo
al OKC repository.3.2 Subs
ription to an Intera
tion ModelWhen a peer needs to perform a task it asks the Dis
overy Servi
e [1℄ for a listof Intera
tion Models mat
hing the des
ription of the task. Then, for ea
h re-
eived Intera
tion Model, the peer 
ompares the methods in its OKCs with the
onstraints in the entry role it is interested in. If the peer �nds an Intera
tionModel whose 
onstraints (in the role the peer needs to perform) are 
overed bythe methods in its OKCs, then the peer 
an subs
ribe to that Intera
tion Modelin the Dis
overy Servi
e. The subs
ription is handled by a subs
ription negotia-tor and 
an be interpreted as an intention to parti
ipate in the intera
tion. Thesubs
ription, through a subs
ription adaptor, binds the Intera
tion Model to aset of methods in the OKCs in peer. A subs
ription 
an endure for only a singleintera
tion run or for many, possibly unlimited, intera
tion runs: a buyer willlikely subs
ribe to run a pur
hase intera
tion on
e, while a vendor may want tokeep selling its produ
ts or servi
es.An additional fun
tionality for subs
ription, not yet in
luded in system, is toallow an intera
tion to spe
ify the OKCs it requires, and let the peer download4



Figure 3: Ex
hange of messages between peers and DS for subs
riptionthem (given permission by the user and some threshold on the trust level forthe IMs and OKCs) in order to run the intera
tion.3.3 Intera
tion bootstrapWhen all the roles in the Intera
tion Model have subs
riptions, the Dis
overyServi
e sele
ts a random peer as a 
oordinator. The 
oordinator bootstraps andruns the intera
tion. The bootstrap involves �rst asking the peers who theywant to intera
t with, among all the peers that have subs
ribed to the variousroles, then 
reating a team of mutually 
ompatible peers and �nally - if possible- asking the sele
ted group of peers to 
ommit to the intera
tion. Figure 4 showsthe ex
hange of messages between the peers, the 
oordinator and the Dis
overyServi
e.For a peer, 
ommitting to an intera
tion, implies the 
reation of an Intera
tionRunContext,that re
eives the Subs
riptionAdaptor from the Subs
riptionNegotiator asin Figure 5.3.4 Intera
tion runThe run of the intera
tion is handled by the 
oordinator and the Intera
tionRunContextof the involved peers. The 
oordinator peer runs the intera
tion lo
ally: themessages are ex
hanged between lo
al proxies of the peers. However, whenthe 
oordinator en
ounters a 
onstraint in a role 
lause, it sends the mes-sage solveConstraintMessage to the Intera
tionRunContext in the peerperforming the role. The message 
ontains the 
onstraint to be solved. TheIntera
tionRunContextasks the Subs
riptionAdaptor the 
orresponding method- found during the 
omparison at subs
ription time. The OKCs are instantiatedlazily: if the OKC that 
ontains the method 
orresponding to the 
onstrainthas not been instantiated yet within the 
ontext of the intera
tion, the 
lass isinstantiated, and stored in the 
ontext. If the instan
e exists in the 
ontext, the
orresponding method is 
alled dynami
ally. The method will use the adaptorto a

ess the elements of the arguments. The peer then sends ba
k the message5



Figure 4: Bootstrap of intera
tion: ex
hange of messages for the sele
tion ofpeers and 
ommitment

6



�adaptors

«interface»
InteractionRunContext

ConstraintAdaptor

SubscriptionAdaptor
� adaptors : ConstraintAdaptor

InteractionRunContextImpl
� subscriptionAdaptor : SubscriptionAdaptor
� OKCFacadeInstances : OKCFacade
+ handleMessage(msg : Message)

SubscriptionNegotiatorImpl
� interactionModelID : int
� Role : int
� description : int
� adaptor : SubscriptionAdaptor

�subscriptionAdaptor�adaptor

Figure 5: UML 
lass diagram of Subs
ription/ContextRun

Figure 6: Intera
tion Run: ex
hange of messages between the 
oordinator andthe peersSolveConstraintResponseMessage to the 
oordinator with the updated valuesof variables and the boolean result obtained from satisfying the 
onstraint.4 Mapping Constraints to MethodsThe mat
her, des
ribed in [3℄, allows the OKCs and the Intera
tion Modelsto be de
oupled. The peer 
ompares the 
onstraints in the roles in whi
h it isinterested with the methods in its OKCs and 
reates a set of adaptors that mapsthe 
onstraint in the roles to similar methods. In order to mat
h 
onstraintsand methods they both need to be semanti
ally annotated.7



4.0.1 Semanti
 Mark-up of MethodsThe ex
hanged messages 
an 
ontain 
omplex stru
tures. The stru
tures 
anbe trees or lists. The stru
ture of the arguments is de�ned in the semanti
annotation of the method, written using Java 5 annotations:�MethodSemanti
(language=tag,args={�produ
t(brand, name, 
ost(
urren
y, value))�,�buyer(name, surname, address(street, post
ode, 
ity))�})publi
 bool registerPur
hase(Argument P, Argument B) {...}The 
ode inside the method 
an a

ess the elements in the stru
ture by path(similarily to XPath):System.out.println(P.getValue("/produ
t[0℄/
ost[0℄/value[0℄�)+� � +P.getValue("/produ
t[0℄/
ost[0℄/
urren
y[0℄�))The nodes in the path are 
oupled with an index, be
ause there might be morethan one node of the same ontologi
al type at the same depth. For example,a parameter that 
ontains a relationship 
an be a expressed as tree with twoidenti
al 
hildren:�MethodSemanti
(language=tag,args={'friends(person,person)'})publi
 boolean add(Argument F){...System.out.println(F.getValue(�friends[0℄/person[0℄�) + � knows �+F.getValue(�friends[0℄/person[1℄�));...}The elements of the stru
ture are rea
hed independently of how they are keptin the ex
hanged messages: the adaptor between the 
onstraint and the methodmaps the elements in the arguments of the 
onstraint to the elements in thearguments of the method.4.0.2 ListsWe have two possibilities: one is to only allow a

ess to the lists through LCCoperators and re
ursion, the other is to use the indexes of the root elements:�MethodSemanti
 (..., args={"[move(from,to,vehi
le)℄"})8



Figure 7: Adaptor between register(...) 
onstraint andregisterPur
hase(...) methodrepresents an argument that 
ontains a list. To a

ess the elements in the list,the index of the root 
hanges.publi
 boolean do(Arg A){System.out.println(A.getValue("/move[2℄/from[0℄");}4.1 AdaptorsFor example, the 
onstraint in the following snippet of a proto
ol:register(P,B) <- bought(P,B) <= a(buyer, ID)where the 
onstraint is de�ned as:register(produ
e(make,name,
ost,
urren
y),pur
haser(surname, address, 
ity, post
ode))will be mapped to the method in the OKC seen in the previous se
tion with theadaptor in Figure 7.Allowing the 
ode inside the method to a

ess the elements without knowinghow they are a
tually stru
tured in the message, de
oupling de fa
to the proto
olfrom the 
omponents.5 A

ess to the peer stateSome of the 
onstraints are fun
tional : they expe
t that the method in the
omponent, given a set of input arguments, will always unify the non instanti-ated arguments with the same values, or will su

eed or fail, independently of9



the peer that has downloaded and exe
uted the 
omponent. For example, the
onstraint sort(List,SortedList) for sorting a list of elements should alwaysunify SortedList with the ordered version of List, even though di�erent peersmay have OKCs that implement di�erent algorithms for sorting it.Other 
omponents work as bridge between the intera
tion model and thepeer lo
al knowledge, and will unify non instantiated variables with values thatdepend on the peer in whi
h the OKC is running. For example, a 
onstraintpri
e(Produ
t, Pri
e) expe
ts that the 
orresponding method in the OKCuni�es the variable Pri
e with the pri
e assigned to Produ
t by the peer, pos-sibly a

essing the database lo
al to the peer: di�erent peers may have di�erentpri
es for the same produ
t. Similarly, in the emergen
y response s
enario, the�re�ghters are queried about their lo
ation when they need to satisfy the 
on-straint at(Position): every �re�ghter will have a di�erent lo
ation, and willset Position with their lo
al position.Moreover, the same peer 
an be involved in many intera
tions simultane-ously, and the peer lo
al knowledge (or state) is 
hanged by one intera
tionand read in another. For example, a peer selling produ
ts will have the totalamount of available produ
ts redu
ed after ea
h su

essful selling intera
tion.For peer lo
al knowledge, or internal state, we mean any element of informationthat 
an persist over di�erent intera
tions (and possibly be altered by them):for example the database of produ
ts just des
ribed.At the moment the OKCs are given the referen
es, at instantiation time, ofthe obje
ts they need to use through the setParameter(..) and getParameter(...)methods: for example, the peer that runs the simulator in the emergen
y re-sponse s
enario is given the referen
e to the Prolog 
lient that allows it to querythe Prolog environment in whi
h the simulator is a
tually run.In the planned development, the peer will expose a set of methods thatallow the OKCs to a

ess its internal state, and the OKCs will expose the listof methods in the peer they need to use. The same mat
hing pro
ess thattakes pla
e between the 
onstraint and the methods in the OKC will take pla
ebetween the OKC and the peer exposed method, generating a set of adaptorsallowing the methods in the OKC to a

ess the peer lo
al knowledge.The 
lass implementing the OKCFa
ade interfa
e is annotated (via Java 5.0annotations) with the semanti
 des
riptions of the peer's methods it needs touse. When a peer downloads an OKC, the methods required by it are mat
hedagainst the methods exposed by the peer: if the mat
hing is good enough (theremight be OKCs not 
ompatible with a parti
ular implementation of a peer),then the result of 
omparison is an adaptor, similar to those between OKCmethods and 
onstraints, that allow the OKC methods to a

ess the elementsin the peer's methods using its internal terminology.The peer's ontology is 
onsidered as lo
al knowledge. The a
tual implemen-tation of the ontology handler is up to the peer developers, but the OKCs -if they need it - 
an a

ess it through the same pro
edure of 
alling a set ofexposed methods. 10



5.1 Deferred Intera
tionsAn interesting possibility is for the OKC method to ask the peer to run anotherintera
tion in order to 
olle
t further information, or to obtain something asyn-
hronously. Starting another intera
tion 
an happen in two ways: impli
itly orexpli
itly.In the impli
it 
ase, the peer is asked for further information, and it is up tothe peer to de
ide how to 
olle
t the information: it may already have it, andanswer dire
tly, or it may de
ide to pro
eed with a new intera
tion to obtainthe information.In the expli
it 
ase, the method 
an either tell the ID of the intera
tionto perform to the peer, together with additional �lter information for the sub-s
ription and the bootstrap, or be more generi
 and tell the peer to sear
han intera
tion using a set of keywords, and follow the standard subs
riptionpro
edure.Referen
es[1℄ S. Kotoulas and R Siebes. Deliverable 2.2: Adaptive routing in stru
turedpeer-to-peer overlays. Te
hni
al report, OpenKnowledge.[2℄ D Robertson. A lightweight 
oordination 
al
ulus for agent systems. InDe
larative Agent Languages and Te
hnologies, pages 183�197, 2004.[3℄ P Shvaiko, F. Giun
higlia, M. Yatskevit
h, J. Pane, and P. Besana. Deliv-erable 3.6: Implementation of the ontology mat
hing 
omponent. Te
hni
alreport, OpenKnowledge, 2007.

11


