
OpenKnowledge

FP6-027253

Peer to Peer Coordination Protocol

Adrian Perreau de Pinninck1, David Dupplaw2, Spyros Kotoulas3,
Marco Schorlemmer1, Ronny Siebes3, and Carles Sierra1

1 Artificial Intelligence Research Institute, IIIA-CSIC, Spain
2 School of Electronics and Computer Science, University of Southampton, UK

3 Vrije Universiteit Amsterdam, The Netherlands

Report Version: final
Report Preparation Date:
Classification: deliverable D1.2
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)

Partners: IIIA(CSIC) Barcelona
Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento



DELIVERABLE 1.2
Coordination protocol specification

Adrian Perreau de Pinninck1, David Dupplaw2, Spyros Kotoulas3, Marco
Schorlemmer1, Ronny Siebes3, and Carles Sierra1

1 Artificial Intelligence Research Institute (IIIA - CSIC)
Barcelona, Spain

adrianp@iiia.csic.es

marco@iiia.csic.es

sierra@iiia.csic.es
2 School of Electronics and Computer Science

Southampton, UK
dpd@ecs.soton.ac.uk

3 Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

kot@few.vu.nl

ronny@cs.vu.nl

Abstract. In this report we define the protocols used in the Open-
Knowledge platform to coordinate the interacting peers. These proto-
cols are the basics to be implemented by the software installed in each
user’s machine in order to join the OpenKnowledge community. Once
the software is installed the user may search and download other pieces
of software (or plug-ins) that will allow him to interact with other users.
All these processes are supported by the protocols that we describe in
this article.

1 Introduction

This paper explains the underlying protocols for any interaction that goes on
within the OpenKnowledge system. OpenKnowledge is a platform based on a
P2P paradigm where each OpenKnowledge user accesses the network through
an application installed in a computer connected to the internet. In collabora-
tion with their peers, users may bring about many different tasks. Tasks are
formalized in OK as interaction models (IMs), which specify how the interaction
between many different users is to proceed. In deliverable 1.1 [1] and in [2] the
language that will be used to define these interaction models has been defined,
namely Ambient LCC. Nonetheless, the OK system is orthogonal to it and is
prepared to use other languages to specify interaction models.

The user may interact with other users by playing one of the constitutive roles
of an interaction model. OpenKnowledge Components (OKCs) are the code plug-
ins that allow users to play particular roles in an interaction model. OKCs can
be searched and downloaded from the network by the users and installed in their



computers. Once an OKC is installed in the peer, the user can subscribe it to
play the desired role in the enacted IM. This subscription process lets the team
formation service (TFS) know when the OKC is ready to start interacting, that
is, when all the roles in the IM are covered by peers. The TFS is executed by
some peers of the OpenKnowledge network to steer the team formation process.
When the TFS has enough subscriptions to fulfill the obligatory roles in the IM,
a team will be formed to start a new interaction. The users forming a team will
interact with each other through a coordinator peer in charge of orchestrating
the interaction according to the IM. In Figures 1 we see how the different parts
of the OpenKnowledge platform are related to each other in a high level module
description.

Fig. 1. Open Knowledge Architecture

There are two main protocols involved in these interactions. First, the pro-
tocol for finding the players that will make up a team for an interaction (team
formation). Second, a protocol to verify that the interaction model is being fol-
lowed (orchestration). These two protocols have been defined and implemented
in the system’s first prototype version. We are using an iterative approach to
build our software, which means that in future iterations the base protocols are
liable to change. We have taken this into account when designing the protocols
and we have purposefully left space for future modifications.

In sections 2 and 3 we define in more detail the interaction models and the
OpenKnowledge components. In section 4 we explain how the communication
layer that serves as a message passing framework has been designed. In section
5 we explain the protocol for team formation and in section 6 we define the base



protocol for interaction enactment. In section 7 we give an example of how the
whole system would work with a simple interaction. In section 8 we give insights
into the new developments that are planned for future prototypes. Finally, in
section 9 we give a summary of the sate of the protocols.

2 Interaction Models

One of the novel aspects of OK is that it aims at raising the profile of the
interaction models to the point that they are the network’s main currency. This
means that every message that is processed on the network always has some
context (an interaction model) within which it is being executed. This is very
important to guarantee the openness of applications.

OKCs on the system may be seen in an extremely simplified version of its
desired full functionality as passive components that provide a data processing
functionality, just like a web-service. That is, when called they process data and
produce an output. If we were to write the specifications for the inputs and
outputs of these components we might end up with a semantic web-service de-
scription that would allow components to be executed on some data. This over
simplification of the behaviour of an OKC will be removed in future implemen-
tations to permit more proactive behaviour.

However, any use of these components to solve large and complex problems
has to be defined. This is done by defining the OKC orchestration via the spec-
ification of their interaction. In the first implementation it will be a functional
interaction that will combined the input and output of the components in a
consistent way. In future versions a more complex combination that take into
account the autonomy of the OKCs will be permitted. However, even in the cur-
rent simplified version, from the types of the inputs and outputs of a component,
no inference can be made on how to sensibly orchestrate the values that pass
between them; the coordination rules of the interaction model will provide such
a formalisation. To fully define specific applications in which these components
may be activated we thus need to define both the interaction specification and
the coordination rules. Together, they create an interaction model by which we
can orchestrate components providing services that fulfil the roles within the
interaction specification.

Ideally an IM formalisation should be executable; this would allow the com-
ponents themselves to not only understand the rules of the interaction, but
execute the interaction directly from the model itself. Interpreters at the peers
provide the means by which incoming interaction model instances can be exe-
cuted. Section 6 provides further information on how the interaction models are
executed in the OpenKnowledge system.

We have based interaction models on message passing protocols with con-
straints on the generation and reception of certain messages. That is, messages
are sent to or received from peers if the constraints on that send or receive mes-
sages are satisfied in the current context. In practical terms, this means that
constraints are implemented as calls to procedures that in case of success when



acting as constraints in message sending trigger the message operation, and when
acting as constraints in message receiving are triggered when the message is re-
ceived. If the constraints are not satisfied we must backtrack in the execution of
the interaction model to find an alternative path in the code.

3 OpenKnowledge Components

OKCs play the active role in an interaction model. Many different OKCs with
the ability to play the same role in the same IM can coexist in the system. It
will be up to the user to decide which one suits his needs best.

OKC’s are made up of the following parts:

– IM reference - the identifier of the interaction model that the OKC can play.
– Role - the name of the role in the referenced interaction model that the OKC

can play.
– Code - the algorithms (procedures) that solve the constraints for the message

operations that are required by the OKC’s role in the referenced interaction
model.

– Description - (optional) describes how the OKC plays the role in the refer-
enced IM. It gives the user an insight into its workings, helping him decide
if he wants to use this OKC or another one.

OKCs are packaged into one file so that they can be moved around the
network easily. The OKC file is a zip file which contains the compiled code
(optionally the source code too), and an XML file with the IM reference, role,
description, and name of the main class.

4 Communication Layer

The communication layer supports the set of basic protocols used by the peers
of the OK system to communicate with one another. The main idea is that
messages are sent asynchronously between peers using TCP/IP as the transport
protocol. This is a simple protocol that is widely spread over the Internet and
guarantees that messages are delivered.

We use the pipe concept, through which messages are sent between End-
Points. Each EndPoint has an identifier: EndPointID that is to be included in
messages and that the communication layer uses to route them to the appro-
priate receiver. There can be many EndPoints within one single peer, therefore
messages have to contain information on how to reach the peer and the End-
Point within it. Since we are using TCP/IP as the message sending protocol,
we assume each peer has an IP address, and will be listening for messages at a
concrete port. Therefore, an EndPointID is made up of the peer’s address and
port, and a unique identifier inside the peer. Messages contain the sender and
receiver’s EndPointID and the information being delivered.

Each peer’s communication layer is in charge of managing its EndPoints and
of sending and receiving messages. When an OKC in the platform expects to



receive messages through the communication layer, it informs the peer which
will generate a unique identifier for it, and create the EndPointID with this id,
the peer’s IP address and the port. The peer maintains a list with the EndPoints
it holds in order to forward the messages that it receives to their destination.
Each peer will be listening at its port for messages sent to those EndPoints it
holds.

When a message is received by the peer, it reads the EndPointID to which
it must be delivered (the IP address and port should match the peer’s) and
extracts the EndPoint’s unique identifier. It will look for the EndPoint with the
given identifier and will forward the message to it. When the peer is given a
message by one of its EndPoints that it has to deliver to another EndPoint, it
reads the destination IP and port from the EndPointID and sends the message
to the given address. Messages are sent over the network.

5 Team Formation

Team formation is a process achieved through three different subtasks: OKC
subscription, coordinator subscription, and team instantiation. Each of these
subtasks is achieved by means of a simple protocol:

– OKC subscription - This protocol selects one of his peer’s OKC and informs
the TFS about the readiness of the OKC in taking part in the execution of
its IM. To do so the user first selects the OKC. Then the peer’s subscrip-
tion manager inserts the subscription request into its database. Finally, the
peer sends to the Team Formation Service a subscription message contain-
ing a reference to the IM, the name of the role to be played, a pointer to
the OKC going to play the role, and some extra information about the sub-
scription (i.e., if it is a subscription for a single interaction, or for multiple
interactions).

– Coordinator subscription - This protocol starts when a peer configured to
play as coordinator is booted. First, the peer creates a running instance of
the coordinator. Then, the communication layer creates a new EndPoint and
assigns its EndPointID to the coordinator’s instance. Finally the peer sends
the Team Formation Service a subscription containing the coordinator’s End-
PointID, and information about the subscription (i.e., the supported IM
languages).

– Team instantiation - This protocol is executed by the Team Formation Ser-
vice every time it receives a new OKC subscription. First the TFS looks for
IMs for which there are enough OKC subscriptions to play all of its obliga-
tory roles. Then, for each of those IMs it will find a subscribed coordinator
able to parse it. After that, the TFS will send the coordinator the IM and a
list of peers for each role in the IM with the name of the OKC subscribed to
play. When the coordinator receives this information, it will contact each of
the peers in the list to ask them to instantiate the OKC for the new inter-
action. Each peer’s subscription manager will create a new running instance



of the OKC code, the communication layer will create a new EndPointID
and assign it to the newly created instance. Finally the peer’s subscription
manager will inform the coordinator of the EndPointID of the OKC instance
playing the role in the interaction model.

6 Orchestration

Orchestration is the process through which an interaction is realized, making
sure that the interaction model is respected. There is only one protocol used
in this orchestration: the protocol through which the coordinator asks any of
the OKCs playing a role in the IM to solve a constraint. As of now, the OKCs
are reactive pieces of code that just solve constraints specified in the interaction
model, they cannot send messages unless they reply to a previous message sent
by the coordinator.

Once the coordinator peer has received a list of EndPointIDs and the inter-
action model it will be executing, it starts parsing the interaction model code.
The parsing of the code will require the intervention of the OKCs to solve the
constraints. Therefore, in the parsing process whenever a constraint has to be
verified the coordinator will contact the corresponding OKC via its EndPointID
to solve it. Communication, and therefore the protocol, are only realized when
the coordinator reaches a point in the interaction model where a constraint
must be satisfied in order to continue. Constraints are part of the clauses used
to model message passing. A message may only be sent if the sending agent
solves the constraint. Since it is the OKCs that have the code that can solve
interaction model constraints, the coordinator must get in touch with them in
order for them to solve the constraint. This is done through what we have called
the constraint solving protocol. When the constraint is solved, the coordinator
continues executing the interaction model until a new constraint is found or until
the interaction model ends.

The constraint solving protocol consists of two parts. The first one is when
the coordinator, after finding a constraint in the interaction model it can’t solve,
sends a message to the OKC which is playing the role that can solve it. The sec-
ond part occurs when the OKC, after receiving the request to solve a constraint,
executes the code that solves this constraint and returns a message to the coor-
dinator with the results.

The constraint solving request is sent by the coordinator. The request is
encripted as an XML message sent to the OKC through the communication layer.
The coordinator has been given the EndPointIDs of all the interacting OKCs
at the beginning of the interaction. The request message contains the name of
the constraint to be solved, and a list of the parameters. The parameters can be
both input or output values. The request message also contains the interaction
state, which contains all the relevant data in the current interaction. The values
to be stored in the interaction are defined in the interaction model, and it is the
coordinator who is in charge of updating them. When the constraint is received
by the peer which is executing the OKC, it reads the name of the constraint to be



solved and looks for the method matching that name in the OKC class. It then
executes the method in the class passing the input values and the interaction
state as parameters.

When the OKC has executed the method that solves the constraint, the peer
gets the returned values and wraps them into a modified interaction state. This
state is sent back to the coordinating peer as an XML message. The peer knows
the EndPointID of the coordinating peers because it is given in the constraint
solving request message. When the coordinator receives the message it merges
the new values into the interaction state and continues executing the interaction
model.

7 Example

In order for the reader to fully understand the coordination protocol, in this sec-
tion we will go through a simple Hello World example. This example consists of
making one peer in the OpenKnowledge system greet another peer. This greet-
ing task is defined through an interaction model which contains two roles (see
Figure 2): the greeter and the greetee. The definition of the roles is very simple,
the greeter role sends a message to the greetee role which contains the text that
is returned by the greeting constraint, the greetee role receives a message from
the greeter role and its contents are used as a parameter to the display greeting
constraint.

a(greeter,A) ::

message(Text) => a(greetee,B) <- greeting(Text)

a(greetee,B) ::

display_greeting(Text) <- message(Text) <= a(greeter,A)

Fig. 2. A simple interaction model

A trivial OKC is defined for each one of the previously defined roles. The one
implementing the greeter role, which we will call writer, will pop up a window
with a text input in which the user will write the greeting it wants delivered.
The OKC implementing the greetee role, which we will call visualizer, will pop
up a window with the text received as a greeting.

Now we will show how a hello world interaction takes place between two
peers willing to play its roles. For this we will assume that there are three users
with a peer that forms part of the OK network: Anne, John, and Pete. Anne
has downloaded the writer OKC and John the visualizer OKC. Pete is one of
those users willing to give up its computer power to act as coordinator. The
first part of the process would be team formation: Pete would subscribe its peer
as a coordinator. John would subscribe its visualizer OKC to play the greetee



role (at this point the TMS still does not have enough subscription to fulfill all
the roles of the hello world interaction model). Anne would subscribe its writer
OKC to play the greeter role. In each case the user’s peer will remember which
component has been subscribed and will send the TMS a subscription message
that contains the Hello World IM, the name of the role (either greeter or gree-
tee), and the identifier of the OKC. Now the TMS realizes that it has received
enough subscriptions to fulfill the two roles of the hello world IM. Therefore, it
looks for a coordinator peer, since only Pete’s peer is subscribed as coordinator
the TMS sends it a message with the Hello World IM, and the list of actors that
will take part in the interaction: Anne’s writer OKC playing greeter, and John’s
visualizer OKC playing greetee. At this point the Pete’s peer (the coordinator)
will send a message to Anne’s peer asking it to create a new OKC instance for
the interaction. Anne’s peer will create an OKC instance which will have and
EndPointID. The EndPointID is sent to Pete’s coordinator so it can communi-
cate with it. The same will happen for John. At this point there is a coordinator
instance running at Pete’s peer, that knows that Anne’s peer will be playing the
greeter role, and John’s peer will be playing the greetee role. The coordinator
knows both their EndPointIDs.

Now that all the peers are ready, the coordinator peer (John’s) starts parsing
the interaction model. The role that initiates the interaction is the greeter role,
which needs to satisfy the greeting constraint. Therefore the coordinator sends
a message to the EndPoint of the OKC playing that role (Anne’s writer OKC)
asking to satisfy the constraint. Anne’s peer receives the message and forwards
it to the appropriate EndPoint (the writer OKC instance). The OKC pops up a
window for Anne to write the greeting text. Anne writes ”Hello Buddy!!”. This
text is returned as satisfying the constraint. The solved constraint is sent as a
message to the coordinator. Now the coordinator continues parsing the IM and
sees that the greetee role should receive the message with the text sent by the
greeter role. And the text is then used as a parameter to the display greeting
constraint, that is to be satisfied by the greetee role. The coordinator sends a
message with the constraint to be solved, which has as a parameter the text
written by Anne: ”Hello Buddy!!”, to the EndPoint playing the greetee role
(John’s peer). When the message is received John’s visualizer OKC pops up a
window with the text used as parameter. Now John has been greeted by Anne,
and the Interaction has finished.

8 Future Work

As we already said in the introduction, we are using an iterative approach to
develop the platform in which OpenKnowledge will be run. In future iterations
we plan to add some improvements that will make the OK architecture more
flexible. In this section we explain some of the improvements which we already
have in mind.

We have realized a modular design for the OpenKnowledge architecture. This
way we have paved the way for future improvements that are not traumatic.



One of these improvements is to allow interaction models to be defined through
other languages other than Ambient LCC, which is our prototype language.
This will be accomplished by implementing coordinators that interpret the new
interaction model definition languages. When a team is formed that plays an
interaction defined in a language, the team formation service will search for a
coordinator that can interpret them. When a peer subscribes as a coordinator
it will have to tell the TFS what languages it can interpret.

We will also implement reputation mechanisms into the team formation pro-
tocols. This way OK users will be able to restrict the users with which they
wish to interact by adding constraints to the OKC subscription process. Also,
before forming a team, the system will inform all the potential teammates about
the reputation of other potential teammates, so that the users will be able to
decide if they want to join. In order to achieve this we will have to add protocols
through which some users can rate OKCs and OK peers in the network, and to
fetch these ratings.

We are planning to deal with dynamic teams in future architecture versions.
Right now the teams are formed at the beginning of the interaction, and they
remain static throughout it. To achieve a system that is more open, we will allow
users to join ongoing interactions. This way more types of IMs may be described.

OKCs in this system are fully reactive. We plan to modify the orchestration
protocols in order to allow OKCs to be proactive and choose when they want
to send messages as part of the interaction. The coordinator peers will still be
in charge of enforcing the IM. We also want to decouple OKCs from IMs, by
allowing OKCs to execute roles in different IMs. This would mean that the OKC
would define its properties and through matching techniques the TFS would
recruit the OKCs that have characteristics matching those needed to play each
role.

9 Conclusions

In this paper we have shown how we have implemented interaction models be-
tween distributed components in the OpenKnowledge project. Through a series
of protocols that have been specified in sections 5 and 6, an OpenKnowledge
user is able to download code that is able to play a role in an interaction model,
and execute this code locally so that it can interact with other computers in the
OpenKnowledge network by enacting the specified interaction model.

The following protocols have been specified: OKC subscription to play a
role in an interaction model, peer subscription to act as interaction model co-
ordination, team instantiation protocol, and constraint solving protocol. These
protocols are to be executed in order to realize an interaction, some of them just
once, and others many times.

In the actual implementation of the OpenKnowledge system we have cen-
tralized the coordination task, OKCs cannot choose who they interact with or
join ongoing interactions, and the communication layer we have used is rather
simple. In future versions we plan to relax these assumptions in order to make



the platform more flexible and general purpose. This means that the protocols
will have to be more sophisticated, but we have left hooks in our implementation
that will allow this.

References

1. Sindhu Joseph, Adrian Perreau de Pinninck, Dave Robertson, Carles Sierra, and
Chris Walton. Interaction model definition language. Technical report, Open-
knowledge consortium, 2006.

2. Sindhu Joseph, Adrian Perreau de Pinninck, Dave Robertson, Carles Sierra, and
Chris Walton. Interaction model definition language. In Agent Organizations: Mod-
els and Simulations (AOMS workshop) in IJCAI’07, 2007.


