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9.1 What Are Descriptors?

In general, descriptors are some set of numbers that are produced to describe a given shape. The shape may not be
entirely reconstructable from the descriptors, but the descriptors for different shapes should be different enough that
the shapes can be discriminated.

We saw some simple examples of descriptors in our discussion of contour representations. These included the
contour length (perimeter) and the bending energy.

What qualifies as a good descriptor? In general, the better the descriptor is, the greater the difference in the de-
scriptors of significantly different shapes and the lesser the difference for similar shapes. What then qualifies similarity
of shape? Well, nobody’s really been able to answer that one yet. If we could quantify similarity of shape, we’d have
the perfect descriptor. Indeed, that’s what descriptors are: attempts to quantify shape in ways that agree with human
intuition (or task-specific requirements).

Regions can either describe boundary-based properties of an object or they can describe region-based properties.
In this lecture, we focus on region-based descriptors.

9.2 Some Simple Shape Descriptors

A few simple descriptors are

Area. The number of pixels in the shape. Your text describes algorithms for calculating the area from quadtree or
chain-coding representations.

Perimeter. The number of pixels in the boundary of the shape.

(Non-)Compactness or (Non-)Circularity. How closely-packed the shape is (not): perimeter2/area. The most com-
pact shape is a circle (4π). All other shapes have a compactness larger than4π.
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Eccentricity. The ratio of the length of the longest chord of the shape to the longest chord perpendicular to it. (This
is one way to define it—there are others.)

Elongation. The ratio of the height and width of a rotated minimal bounding box. In other words, rotate a rectangle
so that it is the smallest rectangle in which the shape fits. Then compare its height to its width.

Rectangularity. How rectangular a shape is (how much it fills its minimal bounding box): area of object/area of bounding box.
This value has a value of 1 for a rectangle and can, in the limit, approach 0 (picture a thin X).

Orientation. The overall direction of the shape. (I’ ll come back and define this more precisely later.)

9.3 Practical Considerations for Measuring Properties

When measuring the perimeter of an object, do we follow the pixels on the inside of the object’s boundary, the exterior
pixels just outside that boundary, or the “cracks” between the interior and exterior pixels? Any of the three methods
can be used, and the differences go away as the object size increases—just be consistent.

Also, when measuring perimeter, does one simply count pixels? That can artificially bias diagonal edges high (if
counting 4-connected) or low (if counting 8-connected). We can do what we discussed earlier for distance measures:
count 1 pixel for 4-connected neighbors and

√
2 for 8-connected ones.

9.4 Topological Descriptors

If we stretch a shape like we would a cutout from a rubber sheet, there are certain shapes we can make and others we
can’t. Topology refers to properties of the shape that don’t change, so long as you aren’t allowed to tear or join parts
of the shape.

A useful topological descriptor is the Euler number E: the number of connected components C minus the number
of holes H:

E = C − H

(You should know how to use connected-component labeling to determine the Euler number.) While the Euler number
may seem like a simple descriptor (it is), it can be useful for separating simple shapes.

9.5 Convex Hull: Bays

Although not strictly a topological property, we can also describe shape properties by measuring the number or size of
concavities in the shape. We can do this first finding the convex hull of the shape and then subtracting the shape itself.
What are left are either holes (“ lakes” ) or concavities (“bays” ). This might be useful in trying to distinguish the letter
“O” from “C” , etc. One can then recursively identify concavities within each “bay” , etc. The resulting structure is a
concavity tree.

9.6 Extremal Points

Another way to describe a shape is to find its extremal points.
The simplest form of extremal representation is the bounding box: the smallest rectangle that completely contains

the object.
A more powerful way of using extremal points is to find the eight points defined by: top left, top right, left top, left

bottom, bottom right, bottom left, right top, and right bottom. (Obviously, some of these points may be the same.)
By connecting opposing pairs of extremal points (top left to bottom right, etc.) we can create four axis that describe

the shape. These axis can themselves be used as descriptors, or we can use combinations of them.
For example, the longest axis and its opposite (though not necessarily orthogonal axis) can be labeled the major

and minor axes. The ratio of these can be used to define an aspect ratio or eccentricity for the object. The direction of
the major axis can be used as an (approximate) orientation for the object.

How do extremal points respond to transformations?
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9.7 Profiles

A useful region-based signature is the profile or projection. The vertical profile is the number of pixels in the region
in each column. The horizontal profile is the number of pixels in the region in each row. One can also define diagonal
profiles, which count the number of pixels on each diagonal.

Profiles have been used in character recognition applications, where an L and a T have very different horizontal
profiles (but identical vertical profiles), or where A and H have different vertical profiles (but identical horizontal
profiles).

Profiles are useful as shape signatures, or they may be used separate different regions. A technique known as
“signature parsing” uses vertical profiles to separate horizontally-separated regions, then individual horizontal profiles
to recursively separate vertically-separated regions, etc. By alternating this process and recursively splitting each
region, one “parse” binary objects that are organized horizontally and vertically, like text on a page.

9.8 Moments

Another way to describe shape uses statistical properties called moments.

9.8.1 What Statistical Moments Are

For a discrete one-dimensional function f(x), we can compute the mean value of the function using

µ =
∑N

x=1 xf(x)∑N
x=1 f(x)

(9.1)

We can also describe the variance by

σ2 =
∑N

x=1(x − µ)2f(x)∑N
x=1 f(x)

(9.2)

A third statistical property, called skew, describes how symmetric the function is:

skew =
∑N

x=1(x − µ)3f(x)∑N
x=1 f(x)

(9.3)

All of these are examples of moments of a function.
One can define moments about some arbitrary point, usually either about zero or about the mean. The n-th moment

about zero, denoted as mn, is

mn =
∑N

x=1 xnf(x)∑N
x=1 f(x)

(9.4)

The zeroeth moment, m0, is always equal to 1. The mean µ is the first moment about zero:

µ = m1 (9.5)

The n-th moment about the mean, denoted as µn and called the n-th central moment is

µn =
∑N

x=1(x − µ)nf(x)∑N
x=1 f(x)

(9.6)

The zeroeth central moment µ0 is, again, equal to 1. The first central moment µ1 is always 0. (Do you see why?) The
second central moment µ2 is the variance:

σ2 = µ2 (9.7)

The third central moment µ3 is the skew:
skew = µ3 (9.8)
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The fourth central moment µ4 is the kirtosis:
kirtosis = µ4 (9.9)

If we have an infinite number of central moments, we can completely describe the shape of the function. (We do,
of course, also need the mean itself to position the function).

9.8.2 Moments of Two-Dimensional Functions

Suppose that we have a discrete function not over one variable but of two. We can extend the concept of moments by
defining the ijth moment about zero as

mij =

∑N
x=1

∑N
y=1 xiyjf(x, y)∑N

x=1

∑N
y=1 f(x, y)

(9.10)

Again, m00 = 1. The m10 is the x component µx of the mean and m01 is the y component µy of the mean.
We define the central moments as

µij =

∑N
x=1

∑N
y=1(x − µx)i(y − µy)jf(x, y)∑N

x=1

∑N
y=1 f(x, y)

(9.11)

Similar to before, µ10 = µ01 = 0.
We can use these moments to provide useful descriptors of shape. Suppose that for a binary shape we let the pixels

outside the shape have value 0 and the pixels inside the shape value 1. The moments µ20 and µ02 are thus the variances
of x and y respectively. The moment µ11 is the covariance between x and y, something you may have already seen in
other courses. You can use the covariance to determine the orientation of the shape. The covariance matrix C is

C =
[

µ20 µ11

µ11 µ02

]
(9.12)

By finding the eigenvalues and eigenvectors of C, we can determine the eccentricity of the shape (how elongated
it is) by looking at the ratio of the eigenvalues, and we can determine the direction of elongation by using the direction
of the eigenvector with whose corresponding eigenvalue has the largest absolute value. The orientation can also be
calculated using

θ =
1
2

tan−1 2µ11

µ20 − µ02
(9.13)

(Note: be careful when implementing this—there is a 180-degree ambiguity in arctangents that turns into a 90-degree
ambiguity when you take half the angle. If you’re coding this in C or Java, use atan2 instead of atan.

There are many other useful ways that we can combine moments to describe a shape. Even more fundamentally,
though, we can completely reconstruct the shape if we have enough moments. But what if we don’t use enough? Well,
we can construct approximations to the shape that share these same properties. I could, for example, make a circle
with the same mean as the shape, an ellipse with the same mean and covariance, etc.

In a sense, the sequence of moments is analogous to the components of a Fourier sequence—the first few terms
give the general shape, and the later terms fill in finer detail.

Moments have been shown to be a very useful set of descriptors for matching.

9.8.3 Profile Moments

A number of satistical moments for 2-d regions can be calculated from the profiles of those regions. Let’s define the
following profiles:

Pv = vertical profile of f(x, y)
Ph = horizontal profile of f(x, y)
Pd = diagonal (45 degree) profile of f(x, y)
Pe = diagonal (−45 degree) profile of f(x, y)
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µ10 = µv

µ01 = µh

µ20 = µvv

µ02 = µhh

µ11 =
1
2

(µdd − µhh − µvv)

These can then be used to derive the object orientation. This way of computing orientation can be much more efficient
than calculating the 2-dimensional moments directly.

9.8.4 Response to Transformations

Finally, let’s consider how moments respond to transformations.

Translation. If we translate the object, we only change the mean, not the variance or higher-order moments. So, none
of the central moments affected by translation.

Rotation. If we rotate the shape we change the relative variances and higher-order moments, but certain quantities
such as the eigenvalues of the covariance matrix are invariant to rotation.

Scaling Resizing the object by a factor of S is the same as scaling the x and y coordinates by S. This merely scales
x − µx and y − µy by S as well. Hence, the n-th moments scale by the corresponding power of Sn. Ratios of
same-order moments, such as the ratio of the eigenvalues of the covariance matrix, stay the same under scaling,
as do area-normalized second-order moments.

By combining moments, we can thus produce invariant moments, ones that are invariant to rotation, translation, and
scale. The methods for doing so for second-order moments are straightforward. The methods for doing so for higher-
order moments is more complicated but also possible.

Vocabulary

• Invariance

• Euler number

• Concavity Tree

• Compactness

• Eccentricity

• Orientation

• Profile

• Statistical Moments

• Central Moment

• Variance

• Skew
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• Kirtosis

• Covariance

• Covariance Matrix
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