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SH&B, 4.3.4-4.3.5

14.1 Second-Derivative Zero Crossings and Gradient Magnitude

One caution should be added to our discussion of zero-crossings of second derivatives (e.g., the Laplacian) as an edge
detector. Remember that the idea is to use zeroes of second derivatives to indicate maxima of gradient magnitude. The
problem is that this doesn’t include any notionhoiv strong that maximum is. In other words, even a small blip in

the gradient magnitude is labelled an edge. We can remedy this by combining second- and first-order derivatives. In
other words, an edge can be defined as places where

Vif=0andVf>T

Of course, now we lose one of the greatest virtues of zero crossings: their continuity. One way to deal with such
breaks in continuity is to slowly drop the threshold in places where there is clearly a break. Your text refers to this as
hysteresis thesholding. In other contexts, it is sometimes knownegige rel axation.

14.2 Scale Space

Section 4.3.4 briefly introduces the notion ok@le space. This is the space of measurements that you get after
blurring an image by successively larger and larger Gaussian kernels. The essential idea of scale spaces is this:

1. Itis impossible to make an infinitely small measurement—all measurements of the physical world involve an
aperture.

2. The size of the aperture affects the measurement.

3. In a sense “information” exists at different aperture scales.

4. To extract information at different scales, you must measure at those scales (or simulate such).
5. Smaller (“ more precise”) apertures don’t necessarily produce more information than larger ones.

In a sense, what we've been doing all along by blurring images to smooth away noise is to make measurements
at large scales (with larger apertures). By doing so, we get above the scale of noise and try to make measurements at
scales more natural for the objects in the image. Of course, if the objects are small relative to the noise (or the noise is
large relative to the objects of interest), we can’t separate them.
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Moral: Choose theright scale for the information you're trying to extract.

We will come back and talk about thisideamorein Lecture 22. For now, it is sufficient to think only about some edges
being more accurately detected at scales larger than single-pixel changes. Thisidea, plus another important one from
differential geometry, isillustrated in the following edge detection algorithm.

14.3 Canny Edge Detector
14.3.1 Basic Definition

One problem with Laplacian zero-crossings as an edge detector is that it is simply adding the principal curvatures
together—it doesn’t really determine a maximum of gradient magnitude.

The Canny Edge Detector defines edges as zero-crossings of second derivatives in the direction of greatest first
derivative.

Let’'s examine each of the parts of this definition:

The Direction of Greatest First Derivative Thisissimply thegradient direction (w in first-order gauge coordinates).

The Second Derivativein The Direction of ... We can compute this using the matrix of second derivatives (Hes-
sian):
L,=4"Hu

Zero Crossings of... Aswiththe Marr-Hildreth edge detector, we' |l use positive-negative transitionsto “trap” zeroes.

Thus, in gauge coordinates, the Canny detector is
Lyw =0

Interms of z and y derivatives, this can be expanded to

1 L L L
L§+L§[ y]{LW Lyy][Ly} ()

Zero-crossings in this measure give connected edges much like the Laplacian operator but more accurately localize
the edge.

14.3.2 Scale and the Canny Operator

The Canny algorithm also makes use of multiple scalesto best detect the edges. In particular, it uses Gaussian blurring
kernels of varying sizes {o}} and selects the one that is most stable. The selection of the best scale at which to make
the measurement is the subject of much research, including current research.

Your text writes this as 5
where g denotes the image, = denotes the edge normal (the gradient direction), and G denotes a Gaussian blurring
kernel. Remember, though, this can be rewritten as

on 9=
Thisisanice, compact notation, but remember that 72 is also determined from the blurred image G * g. This notation
also leaves out the detailsin Eq.[14.1]
If we use Eq.[14.1}o determine the edges, we can use Gaussian blurring by measuring each of the five derivatives
in Eq.[14.1lusing derivatives-of-Gaussians of the appropriate standard deviation.



14.3.3 TheAlgorithm

Your text describes the algorithm in this way [my comments added]:

1
2.

Repeat steps (2) till (6) for ascending values of the standard deviation o.

Convolve an image g with a Gaussian of scale o.
[Remember that this step is not explicitly necessary—simply convolve with derivatives of Gaussians when
performing differentiation.]

Estimate local edge normal directions 7 using equation (4.61) for each pixel in the image.
[Remember: 7 isthe gradient direction.]

Find the location of the edges using equation (4.63) (non-maximal suppression).
[i.e., find the zero crossings]

Compute the magnitude of the edge using equation (4.64).
[i.e., compute the gradient magnitude as well]

Threshold edges in the image with hysteresis to eliminate spurious responses.
[Threshold the gradient magnitude as discussed in Section [[4.Tlearlier in this lecture)]

Aggregate the final information about edges at multiple scale using the ‘feature synthesis’ approach.
[Select the “best” scale.]

Vocabulary

e Scale space

e Canny edge detector



